Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV. 相似文献
We have analyzed natural variation in mitochondrial form and function among a set of Caenorhabditis briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal fitness. We performed in vivo quantification of 24 mitochondrial phenotypes including reactive oxygen species level, membrane potential, and aspects of organelle morphology, and observed significant among-isolate variation in 18 traits. Although several mitochondrial phenotypes were non-linearly associated with nad5Δ levels, most of the among-isolate phenotypic variation could be accounted for by phylogeographic clade membership. In particular, isolate-specific mitochondrial membrane potential was an excellent predictor of clade membership. We interpret this result in light of recent evidence for local adaptation to temperature in C. briggsae. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. This study demonstrates that multicellular eukaryotic species are capable of extensive natural variation in organellar phenotypes and highlights the potential of integrating evolutionary and cell biology perspectives. 相似文献
The Neuromutagenesis Facility at the Jackson Laboratory generated a mouse model of retinal vasculopathy, nmf223, which is characterized clinically by vitreal fibroplasia and vessel tortuosity. nmf223 homozygotes also have reduced electroretinogram responses, which are coupled histologically with a thinning of the inner nuclear layer. The nmf223 locus was mapped to chromosome 17, and a missense mutation was identified in Lama1 that leads to the substitution of cysteine for a tyrosine at amino acid 265 of laminin α1, a basement membrane protein. Despite normal localization of laminin α1 and other components of the inner limiting membrane, a reduced integrity of this structure was suggested by ectopic cells and blood vessels within the vitreous. Immunohistochemical characterization of nmf223 homozygous retinas demonstrated the abnormal migration of retinal astrocytes into the vitreous along with the persistence of hyaloid vasculature. The Y265C mutation significantly reduced laminin N-terminal domain (LN) interactions in a bacterial two-hybrid system. Therefore, this mutation could affect interactions between laminin α1 and other laminin chains. To expand upon these findings, a Lama1 null mutant, Lama1tm1.1Olf, was generated that exhibits a similar but more severe retinal phenotype than that seen in nmf223 homozygotes. The increased severity of the Lama1 null mutant phenotype is probably due to the complete loss of the inner limiting membrane in these mice. This first report of viable Lama1 mouse mutants emphasizes the importance of this gene in retinal development. The data presented herein suggest that hypomorphic mutations in human LAMA1 could lead to retinal disease. 相似文献
The HO gene promotes interconversion between a and α mating types. As a consequence, homothallic diploid cells are formed by mating between siblings descended from a single α HO or a HO spore. In order to determine the frequency and pattern of the mating-type switch, we have used a simple technique by which the mating phenotype can be assayed without losing the cell to the mating process itself. Specifically, we have performed pedigree analysis on descendants of single homothallic spores, testing these cells for sensitivity to α-factor.
The switch from α to a and vice versa is detectable after a minimum of two cell divisions. 50% of the clones tested showed switching by the four-cell stage. Of the four cells descended from a single cell, only the oldest cell and its immediate daughter are observed to change mating type. This pattern suggests that one event in the switching process has occurred in the first cell division cycle. Restriction of the switched mating-type to two particular cells may reflect the action of the homothallism system followed by nonrandom segregation of DNA strands in mitosis.
The mating behavior of cells which have sustained a change in mating type due to the HO gene is indistinguishable from that of heterothallic strains.
Habitat fragmentation can alter the trophic structure of communities and environmental conditions, thus driving changes in biodiversity and ecosystem functions. Quantifying niches of generalist predators can reveal how fragmentation alters ecosystems. In a habitat fragmentation experiment, we used stable isotopes of a generalist predator skink to test predictions from spatial theory on trophic structure and to quantify abiotic changes associated with fragmentation among continuous forest, fragments, and matrix habitats. We predicted that in fragments and the matrix, isotopic niches would shift due to decreases in skink trophic positions (δ15N) from reductions in trophic structure of arthropod food webs and abiotic changes over time (δ13C) relative to continuous forest. Contrary to theoretical predictions, we did not find evidence of reductions in trophic structure with fragmentation. In fact, skink δ15N values were higher in the matrix and fragments than continuous forest, likely due to changes in distributions of a detritivorous prey species. In addition, δ13C values in the matrix decreased over years since fragmentation due to abiotic changes associated with matrix tree maturation. We show how isotopic niches are influenced by fragmentation via shifts in biotic and abiotic processes. The potential for either or both spatial and abiotic effects of fragmentation present a challenge for theory to better predict ecological changes in fragmented landscapes. 相似文献
1 Previous work had suggested that adult male click beetles (Agriotes spp.) show differential responses to species specific pheromone traps. This hypothesis was tested using mark–release–recapture methods to estimate the maximum sampling range and the effective sampling area of traps for three species. 2 Captured beetles of the species Agriotes lineatus, Agriotes obscurus and Agriotes sputator were marked to show the direction of release, the distance of the release point from the trap and the replicate. Analysis of variance showed that there were significant differences in recapture rates between species and release distances. There were no significant differences between release direction and replicates. 3 Calculated linear speeds suggested differences in movement rates in the order: A. lineatus > A. obscurus > A. sputator. There were also substantial differences between the species in the maximum sampling ranges and effective sampling areas of the traps. These placed the species in the same order. 4 The results are used to estimate the minimum cost of mass trapping programmes to prevent males from mating, giving values of €165/ha/year (A. lineatus), €247.5/ha/year (A. obscurus) and €2343/ha/year (A. sputator). 5 Implications for the use of pheromone traps in wireworm pest management are discussed. It is concluded that current U.K. recommendations based on the cumulative total catch of the three species over a sampling season can be improved by considering the spatial relationships between the adult trapping system and larval distribution. The current constraint to this is the general inability to separate wireworms into species. 相似文献
We have prepared antisera to deglycosylated rat intestinal mucin and used it to obtain immunoreactive clones from a rat jejunum cDNA library. Four of these clones were sequenced, and all were found to be partial cDNAs that contained 18-base pair tandem repeats characteristic of a mucin. These cDNAs encoded a repetitive peptide with a consensus sequence of TTTPDV. Thus, they bear little resemblance to either of the two human intestinal mucin cDNAs isolated previously (Gum, J. R., Byrd, J. C., Hicks, J. W., Toribara, N. W., Lamport, D. T. A., and Kim, Y. S. (1989) J. Biol. Chem. 264, 6480-6487 and Gum, J. R., Hicks, J. W., Swallow, D. M., Lagace, R. E., Byrd, J. C., Lamport, D. T. A., Siddiki, B., and Kim, Y. S. (1990) Biochem. Biophys. Res. Commun. 171, 407-415). One of these rat mucin clones, designated RMUC 176, was chosen for further analysis. This clone recognized a band of approximately 9 kilobases when used to probe RNA blots. A strong hybridization band was present using rat small intestine and colon RNA but was not detectable when RNA isolated from heart, liver, or kidney was tested. The RMUC 176 clone and the two previously isolated human intestinal mucin cDNA clones were used to probe blots prepared from BamHI-digested DNA of various species. Here, the human probes detected fragments present only in human and chimpanzee DNA, whereas the RMUC 176 clone recognized fragments only in rat and mouse DNA. Thus, the repetitive portions of intestinal mucin genes are apparently not well conserved between phylogenetically distant species. 相似文献
To study the role of initiation codon context in chloroplast protein synthesis, we mutated the three nucleotides immediately upstream of the initiation codon (the -1 triplet) of two chloroplast genes in the alga Chlamydomonas reinhardtii. In prokaryotes, the -1 triplet has been proposed to base pair with either the 530 loop of 16S rRNA or the extended anticodon of fMet-tRNA. We found that in vivo, none of the chloroplast mutations affected mRNA stability. However, certain mutations did cause a temperature-sensitive decrease in translation and a more dramatic decrease at room temperature when combined with an AUU initiation codon. These mutations disrupt the proposed extended base pairing interaction with the fMet-tRNA anticodon loop, suggesting that this interaction may be important in vivo. Mutations that would still permit base pairing with the 530 loop of the 16S rRNA also had a negative effect on translation, suggesting that this interaction does not occur in vivo. Extended base pairing surrounding the initiation codon may be part of a mechanism to compensate for the lack of a classic Shine-Dalgarno rRNA interaction in the translation of some chloroplast mRNAs. 相似文献