首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   87篇
  国内免费   1篇
  2022年   3篇
  2020年   4篇
  2018年   10篇
  2017年   3篇
  2016年   6篇
  2015年   17篇
  2014年   22篇
  2013年   26篇
  2012年   25篇
  2011年   39篇
  2010年   23篇
  2009年   21篇
  2008年   24篇
  2007年   24篇
  2006年   22篇
  2005年   23篇
  2004年   22篇
  2003年   21篇
  2002年   27篇
  2001年   20篇
  2000年   26篇
  1999年   15篇
  1998年   3篇
  1997年   11篇
  1996年   8篇
  1995年   12篇
  1994年   8篇
  1993年   10篇
  1992年   9篇
  1991年   8篇
  1990年   17篇
  1989年   13篇
  1988年   17篇
  1987年   14篇
  1986年   19篇
  1985年   12篇
  1984年   5篇
  1983年   11篇
  1982年   4篇
  1981年   4篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1966年   2篇
  1946年   3篇
排序方式: 共有673条查询结果,搜索用时 31 毫秒
51.

Objective

To evaluate whether multisystemic therapy (MST) is more cost-effective than statutory interventions that are currently available for young offenders in England.

Method

A cost-offset evaluation of MST based on data from a randomised controlled trial conducted in North London, England, comparing MST with usual services provided by two youth offending teams (YOT). Service costs were compared to cost savings in terms of rates of criminal re-offending.

Results

108 adolescents, aged 11–17 years, were randomly allocated to MST+YOT (n = 56) or YOT alone (n = 52). Reductions in offending were evident in both groups, but were higher in the MST+YOT group. At 18-month follow-up, the MST+YOT group cost less in terms of criminal activity (£9,425 versus £11,715, p = 0.456). The MST+YOT group were significantly cheaper in terms of YOT services than the YOT group (£3,402 versus £4,619, p = 0.006), but more expensive including the cost of MST, although not significantly so (£5,687 versus £4,619, p = 0.195). The net benefit per young person for the 18-month follow-up was estimated to be £1,222 (95% CI −£5,838 to £8,283).

Conclusions

The results reported in this study support the finding that MST+YOT has scope for cost-savings when compared to YOT alone. However, the limitations of the study in terms of method of economic evaluation, outcome measures used and data quality support the need for further research.  相似文献   
52.
Despite much research, it remains unclear if dopamine is directly involved in novelty detection or plays a role in orchestrating the subsequent cognitive response. This ambiguity stems in part from a reliance on experimental designs where novelty is manipulated and dopaminergic activity is subsequently observed. Here we adopt the alternative approach: we manipulate dopamine activity using apomorphine (D1/D2 agonist) and measure the change in neurological indices of novelty processing. In separate drug and placebo sessions, participants completed a von Restorff task. Apomorphine speeded and potentiated the novelty-elicited N2, an Event-Related Potential (ERP) component thought to index early aspects of novelty detection, and caused novel-font words to be better recalled. Apomorphine also decreased the amplitude of the novelty-P3a. An increase in D1/D2 receptor activation thus appears to potentiate neural sensitivity to novel stimuli, causing this content to be better encoded.  相似文献   
53.
54.
Macrophage migration into injured or infected tissue is a key aspect in the pathophysiology of many diseases where inflammation is a driving factor. Membrane‐type‐1 matrix metalloproteinase (MT1‐MMP) cleaves extracellular matrix components to facilitate invasion. Here we show that, unlike the constitutive MT1‐MMP surface recycling seen in cancer cells, unactivated macrophages express low levels of MT1‐MMP. Upon lipopolysaccharide (LPS) activation, MT1‐MMP synthesis dramatically increases 10‐fold at the surface by 15 hours. MT1‐MMP is trafficked from the Golgi complex to the surface via late endosomes/lysosomes in a pathway regulated by the late endosome/lysosome R‐SNAREs VAMP7 and VAMP8. These form two separate complexes with the surface Q‐SNARE complex Stx4/SNAP23 to regulate MT1‐MMP delivery to the plasma membrane. Loss of either one of these SNAREs leads to a reduction in surface MT1‐MMP, gelatinase activity and reduced invasion. Thus, inhibiting MT1‐MMP transport through this pathway could reduce macrophage migration and the resulting inflammation.  相似文献   
55.
It is now well-established that compositional bias in DNA sequences can adversely affect phylogenetic analysis based on those sequences. Phylogenetic analyses based on protein sequences are generally considered to be more reliable than those derived from the corresponding DNA sequences because it is believed that the use of encoded protein sequences circumvents the problems caused by nucleotide compositional biases in the DNA sequences. There exists, however, a correlation between AT/GC bias at the nucleotide level and content of AT- and GC-rich codons and their corresponding amino acids. Consequently, protein sequences can also be affected secondarily by nucleotide compositional bias. Here, we report that DNA bias not only may affect phylogenetic analysis based on DNA sequences, but also drives a protein bias which may affect analyses based on protein sequences. We present a striking example where common phylogenetic tools fail to recover the correct tree from complete animal mitochondrial protein-coding sequences. The data set is very extensive, containing several thousand sites per sequence, and the incorrect phylogenetic trees are statistically very well supported. Additionally, neither the use of the LogDet/paralinear transform nor removal of positions in the protein alignment with AT- or GC-rich codons allowed recovery of the correct tree. Two taxa with a large compositional bias continually group together in these analyses, despite a lack of close biological relatedness. We conclude that even protein-based phylogenetic trees may be misleading, and we advise caution in phylogenetic reconstruction using protein sequences, especially those that are compositionally biased. Received: 19 February 1998 / Accepted: 28 August 1998  相似文献   
56.
57.
Aerosol delivery to the airways of the human respiratory tract, followed by absorption, constitutes an alternative route of administration for compounds unsuitable for delivery by conventional oral and parenteral routes. The target for aerosol drug delivery is the airways epithelium, i.e. tracheal, bronchial, bronchiolar and alveolar cells, which become the site of drug deposition. These epithelial layers also serve as a barrier to the penetration of inhaled material. An in vitro model for aerosol deposition and transport across epithelia in the human airways may be a good predictor of in vivo disposition. The present preliminary studies begin an investigation that blends the dynamics of aerosol delivery and the basis of an in vitro simulated lung model to evaluate the transport properties of a series of molecular weight marker compounds across human-derived bronchiolar epithelial cell monolayers. An Andersen viable cascade impactor was used as a delivery apparatus for the deposition of size-segregated particles onto monolayers of small airway epithelial cells and Calu-3 cells. It was shown that these cell layers can withstand placement in the impactor, and that permeability can be tested subsequent to removal from the impactor.  相似文献   
58.
The purpose of this study was to evaluate the hypothesis that spacer devices have limited effect on the in vitro fine particle dose emitted from solution metered dose inhalers containing different proportions of HFA134a [1,1,1,2-tetrafluoroethane] propellant. Two solution formulations (80% and 97.5% wt/wt HFA134a) were tested across the actuator alone, actuator plus Aerochamber, and Ace holding chamber. Particle size distributions were determined using laser diffraction (LD) and cascade impaction (CI). Multimodal particle size distributions were identified using LD. CI analyses were characterized by a major mode located at ≈0.5 μm. The fine particle dose emitted from the inhaler spacer combinations containing 97.5% HFA134a was independent of the device setup used. Fine particle doses were influenced by spacer setup in 80% HFA134a formulations, indicating different plume dynamics of low vapor pressure formulations. Sampling inlet deposition was approximately O when spacer devices were used with either formulation. When spacers were not used, sampling inlet deposition was increased significantly. However, inlet deposition with the 97.5% HFA134a formulation was significantly less than that of the 80% HFA134a formulation (≈25% of emitted dose compared with 69% respectively). Thus, high propellant concentration formulations appear to have more robust in vitro performance. This is particularly important given the preponderance of poor patient compliance that is associated with spacer use. High propellant concentrations had the advantage of fine particle doses that were independent of the device setup and significantly lowered sampling inlet deposition when no spacer was used.  相似文献   
59.
MRL/fas(lpr) mice are affected by a systemic autoimmune disease that results in leukocyte recruitment to a wide range of vascular beds, including the cerebral microvasculature. The mechanisms responsible for the leukocyte trafficking to the brain in these animals are not known. Therefore, the aim of this study was to directly examine the cerebral microvasculature in MRL/fas(lpr) mice and determine the molecular mechanisms responsible for this leukocyte recruitment. Intravital microscopy was used to assess leukocyte-endothelial cell interactions (rolling, adhesion) in the pial microcirculation of MRL(+/+) (control) and MRL/fas(lpr) mice at 8, 12, and 16 wk of age. Leukocyte rolling and adhesion were rarely observed in MRL(+/+) mice of any age. MRL/fas(lpr) mice displayed similar results at 8 and 12 wk. However, at 16 wk, significant increases in leukocyte rolling and adhesion were observed in these mice. Histological analysis revealed that the interacting cells were exclusively mononuclear. Leukocyte rolling was reduced, but not eliminated in P-selectin(-/-)-MRL/fas(lpr) mice. However, leukocyte adhesion was not reduced in these mice, indicating that P-selectin-dependent rolling was not required for leukocyte recruitment to the cerebral vasculature in this model of systemic inflammation. E-selectin blockade also had no effect on leukocyte rolling. In contrast, blockade of either the alpha4 integrin or VCAM-1 eliminated P-selectin-independent leukocyte rolling. alpha4 Integrin blockade also significantly inhibited leukocyte adhesion. These studies demonstrate that the systemic inflammatory response that affects MRL/fas(lpr) mice results in leukocyte rolling and adhesion in the cerebral microcirculation, and that the alpha4 integrin/VCAM-1 pathway plays a central role in mediating these interactions.  相似文献   
60.
The larval life of the spiny lobster Jasus edwardsii is one of the longest and most complex of any marine organism and is poorly understood due to the difficulty of studying cryptic, pelagic organisms. Hence, the capacity for active swimming in the phyllosoma, puerulus and juvenile stages and the use of possible metabolic fuel reserves was inferred from a number of enzyme activities, including citrate synthase, lactate dehydrogenase, and HOAD. High activities of CS and LDH in abdominal tissues of Stage 11 phyllosoma and pueruli are consistent with a capacity to commence active on-shore movement. The activities of LDH and HOAD showed positive allometry while CS was independent of body mass. The body mass dependence of LDH activity may reflect the developing ability of the lobster to initiate brief escape manoeuvres, and the scaling of HOAD reflects an increased use of lipid fuel reserves. Aerobic enzyme activities were higher in abdominal tissues than in cephalic tissues of pelagic pueruli, but high activities appear in the cephalic tissues of juveniles. These changes mirror a developmental shift in activity from pelagic oceanic swimming to a benthic existence on the seabed of the near shore. The low LDH activity in pueruli confirmed previous findings that they have limited feeding capacity, with carbohydrate contributing little towards the major energy reserves. The highest LDH activities occur in the abdominal muscles of juveniles and correlate with rapid tail-flicking escape behaviour. The activities of HOAD increased throughout development, and in the abdominal tissues of juveniles, may reflect lipid transformation and accumulation as an energy reserve. Enzyme activities, therefore, provide useful information concerning migratory behaviour that is presently unavailable from ecological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号