排序方式: 共有167条查询结果,搜索用时 15 毫秒
31.
Gregory O. Staples Michael J. Bowman Catherine E. Costello Alicia M. Hitchcock James M. Lau Nancy Leymarie Christine Miller Hicham Naimy Xiaofeng Shi Joseph Zaia Professor 《Proteomics》2009,9(3):686-695
A key challenge to investigations into the functional roles of glycosaminoglycans (GAGs) in biological systems is the difficulty in achieving sensitive, stable, and reproducible mass spectrometric analysis. GAGs are linear carbohydrates with domains that vary in the extent of sulfation, acetylation, and uronic acid epimerization. It is of particular importance to determine spatial and temporal variations of GAG domain structures in biological tissues. In order to analyze GAGs from tissue, it is useful to couple MS with an on‐line separation system. The purposes of the separation system are both to remove components that inhibit GAG ionization and to enable the analysis of very complex mixtures. This contribution presents amide–silica hydrophilic interaction chromatography (HILIC) in a chip‐based format for LC/MS of heparin, heparan sulfate (HS) GAGs. The chip interface yields robust performance in the negative ion mode that is essential for GAGs and other acidic glycan classes while the built‐in trapping cartridge reduces background from the biological tissue matrix. The HILIC chromatographic separation is based on a combination of the glycan chain lengths and the numbers of hydrophobic acetate (Ac) groups and acidic sulfate groups. In summary, chip based amide‐HILIC LC/MS is an enabling technology for GAG glycomics profiling. 相似文献
32.
Hari G. Garg Hicham Mrabat Craig Freeman Fuming Zhang Charles A. Hales 《Carbohydrate research》2010,345(9):1084-1087
Heparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC’s), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity. In this study, to understand the influence of carboxyl groups in the HP structure required for endogenous activity, a chemically modified derivative of native HP was prepared by converting the carboxyl groups of hexuronic acid residues in HP to primary hydroxyl groups. This modification procedure involves the treatment of HP with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide followed by reduction with NaBH4 to yield carboxyl-reduced heparin (CR-HP). When compared to the antiproliferative potency of native HP on cultured BPASMC’s at three dose levels (1, 10, and 100 μg/mL), the CR-HP showed significantly less potency at all the doses. These results suggest that hexuronic acid residues in both major and variable sequences in HP are essential for the antiproliferative properties of native HP. 相似文献
33.
Henrik Gislason Jeremy Collie Brian R. MacKenzie Anders Nielsen Maria de Fatima Borges Teresa Bottari Corina Chaves Andrey V. Dolgov Jakov Dul
i Daniel Duplisea Heino O. Fock Didier Gascuel Luís Gil de Sola Jan Geert Hiddink Remment ter Hofstede Igor Isajlovi Jnas Pll Jonasson Ole Jrgensen Kristjn Kristinsson Gudrun Marteinsdottir Hicham Masski Sanja Mati‐Skoko Mark R. Payne Melita Peharda Jakup Reinert Jn Slmundsson Cristina Silva Lilja Stefansdottir Francisco Velasco Nedo Vrgo
《Global Ecology and Biogeography》2020,29(5):i-i
34.
35.
Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display 总被引:24,自引:5,他引:24
36.
37.
38.
39.
Background
Appropriate responses to damaged DNA are indispensible for preserving genome stability and preventing cancer. Tumor viruses often target DNA repair machinery to achieve transformation. The Human T-cell leukemia virus type I (HTLV-I) is the only known transforming human retrovirus and the etiological agent of Adult T-cell Leukemia (ATLL). Although HTLV-I-transformed leukemic cells have numerous genetic lesions, the precise role of the viral tax gene in this process is not fully understood.Results
Our results show a novel function of HTLV-I oncoprotein Tax as an inducer of genomic DNA double strand breaks (DDSB) during DNA replication. We also found that Tax acts as a potent inhibitor of homologous recombination (HR) DNA repair through the activation of the NF-kB pathway. These results were confirmed using HTLV-I molecular clones expressing Tax at physiological levels in a natural context. We further found that HTLV-I- and Tax-transformed cells are not more susceptible to DNA damaging agents and repair DNA lesions at a rate similar to that of normal cells. Finally, we demonstrated that during S phase, Tax-associated DDSB are preferentially repaired using the error-prone non-homologous end joining (NHEJ) pathway.Conclusions
This study provides new insights in Tax effects on DNA repair and genome instability. Although it may not be self sufficient, the creation of DNA breaks and subsequent abnormal use of the non-conservative NHEJ DNA repair during the S phase in HTLV-I-infected Tax-expressing cells may cooperate with other factors to increase genetic and genome instability and favor transformation. 相似文献40.
5-azacytidine alters TGF-beta and BMP signaling and induces maturation in articular chondrocytes 总被引:2,自引:0,他引:2
Zuscik MJ Baden JF Wu Q Sheu TJ Schwarz EM Drissi H O'Keefe RJ Puzas JE Rosier RN 《Journal of cellular biochemistry》2004,92(2):316-331
Maintenance of the articular surface depends on the function of articular chondrocytes (ACs) which produce matrix and are constrained from undergoing the maturation program seen in growth plate chondrocytes. Only during pathologic conditions, such as in osteoarthritis, are maturational constraints lost causing recapitulation of the process that occurs during endochondral ossification. With the aim of establishing a model to identify regulatory mechanisms that suppress AC hypertrophy, we examined the capability of 5-azacytidine (Aza) to have an impact on the maturational program of these cells. Primary ACs do not spontaneously express markers of maturation and are refractory to treatment by factors that normally regulate chondrocyte maturation. However, following exposure to Aza, ACs (i) were induced to express type X collagen (colX), Indian hedgehog, and alkaline phosphatase and (ii) showed altered colX and AP expression in response to bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta (TGF-beta), and parathyroid hormone-related protein (PTHrP). Since Aza unmasked responsiveness of ACs to BMP-2 and TGF-beta, we examined the effect of Aza treatment on signaling via these pathways by assessing the expression of the TGF-beta Smads (2 and 3), the BMP-2 Smads (1 and 5), and the Smad2 and 3-degrading ubiquitin E3 ligase Smurf2. Aza-treated ACs displayed less Smad2 and 3 and increased Smad1, 5, and Smurf2 protein and showed a loss of TGF-beta signaling on the P3TP-luciferase reporter. Suggesting that Aza-induction of Smurf2 may be responsible for the loss of Smad2 and 3 protein via this pathway, immunoprecipitation and metabolic labeling experiments confirmed that Aza accelerated the ubiquitination and degradation of these targets. Overall, Aza-treated ACs represent a novel model for the study of mechanisms that regulate maturational potential of articular cartilage, with the data suggesting that maturation of these cells may be due to up-regulation of Smad1 and 5 coupled with a Smurf2-dependent degradation of Smad2 and 3 and loss of TGF-beta signaling. 相似文献