首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   8篇
  101篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   5篇
  2008年   1篇
  2007年   8篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
  1953年   1篇
排序方式: 共有101条查询结果,搜索用时 0 毫秒
41.
The plant and microbial peroxidase superfamily encompasses three classes of related protein families. Class I includes intracellular peroxidases of prokaryotic origin, class II includes secretory fungal peroxidases, including the lignin degrading enzymes manganese peroxidase (MnP), lignin peroxidase (LiP), and versatile peroxidase (VP), and class III includes the secretory plant peroxidases. Here, we present phylogenetic analyses using maximum parsimony and Bayesian methods that address the origin and diversification of class II peroxidases. Higher-level analyses used published full-length sequences from all members of the plant and microbial peroxidase superfamily, while lower-level analyses used class II sequences only, including 43 new sequences generated from Agaricomycetes (mushroom-forming fungi and relatives). The distribution of confirmed and proposed catalytic sites for manganese and aromatic compounds in class II peroxidases, including residues supposedly involved in three different long range electron transfer pathways, was interpreted in the context of phylogenies from the lower-level analyses. The higher-level analyses suggest that class II sequences constitute a monophyletic gene family within the plant and microbial peroxidase superfamily, and that they have diversified extensively in the basidiomycetes. Peroxidases of unknown function from the ascomycete Magnaporthe grisea were found to be the closest relatives of class II sequences and were selected to root class II sequences in the lower-level analyses. LiPs evidently arose only once in the Polyporales, which harbors many white-rot taxa, whereas MnPs and VPs are more widespread and may have multiple origins. Our study includes the first reports of partial sequences for MnPs in the Hymenochaetales and Corticiales.  相似文献   
42.
Mitrula species represent a group of aquatic discomycetes with uncertain position in the Helotiales and an unknown life history. Mitrula species were studied using a combination of cultural, morphological, and molecular techniques. Pure colonies were isolated from Mitrula elegans, and conidia were induced in vitro. Herbarium materials from Europe, Asia, and North America were studied. Sequences of rDNA, including partial small subunit rDNA, large subunit DNA and ITS, were used to infer phylogenetic relationships both within Mitrula and between Mitrula and other inoperculate discomycetes, with special attention to fungi that resemble Mitrula in morphology or ecology. Equally weighted parsimony analyses, likelihood analyses, constrained parsimony analyses, and Bayesian analyses were performed. Results suggest that (1) the anamorph of M. elegans produces brown bicellular conidia, (2) a new subalpine species M. brevispora is distinct, (3) more than six lineages and clades can be recognized in Mitrula, (4) the morphological species M. elegans is not monophyletic, (5) a close relationship between Mitrula and either Geoglossaceae or Sclerotiniaceae is not supported, (6) the Helotiaceae is paraphyletic, and (7) Mitrula belongs to a clade within the Helotiales that also includes other aero-aquatic genera, Cudoniella, Hydrocina, Vibrissea, Ombrophila, and Hymenoscyphus.  相似文献   
43.
Wang Z  Binder M  Dai YC  Hibbett DS 《Mycologia》2004,96(5):1015-1029
Sparassis species show extensive morphological variation, especially when materials from eastern Asia and Australia are compared with collections from North America and Europe. We have been studying the taxonomy of Sparassis from eastern Asia, North America, Australia and Europe, using both morphological and molecular data. DNA was extracted from 32 recent collections of Sparassis from Australia, Canada, China, Finland, France, Germany, Japan, Switzerland, Thailand, the United Kingdom and the United States. The report of a Sparassis taxon from Australia is the first report of this genus from the Southern Hemisphere. Sequences of nuclear and mitochondrial rDNA and the gene encoding RNA polymerase subunit II (RPB2) were used to examine relationships both within the genus Sparassis and between Sparassis species and other members of the polyporoid clade. Equally weighted parsimony analyses and Bayesian analyses were performed using independent datasets and combined datasets of sequences from different regions. Our results suggest that: (i) Polyporoid fungi producing a brown rot may form a clade; (ii) as suggested in a previous study, Sparassis and Phaeolus form a monophyletic group, which is united by the production of a brown rot, the presence of a bipolar mating system and the frequent habit of growing as a root and butt rot on living trees; (iii) at least seven lineages are within Sparassis, represented by S. spathulata, S. brevipes, S. crispa, S. radicata and three taxa that have not been described, which can be distinguished on the basis of fruiting body structure, presence or absence of clamp connections, presence or absence of cystidia and spore size.  相似文献   
44.
45.
46.
47.

Background  

Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are uncertain due to processing error and biological variability. Evaluating estimation error is critical to interpreting biological significance and improving the ELISA microarray process. Estimation error evaluation must be automated to realize a reliable high-throughput ELISA microarray system.  相似文献   
48.
The Quality Assurance for Aboriginal and Torres Strait Islander Medical Services (QAAMS) Program is the largest and longest-standing national point-of-care testing (PoCT) program in Australia. With a focus on PoCT for diabetes management, it now operates in 115 Indigenous medical services and has been funded continuously by the Australian Government for 11 years. A recent independent evaluation of the QAAMS Program concluded that the program continues to meet best practice standards for Indigenous healthcare, diabetes management and PoCT.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号