全文获取类型
收费全文 | 177篇 |
免费 | 19篇 |
专业分类
196篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2017年 | 3篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 11篇 |
2013年 | 13篇 |
2012年 | 15篇 |
2011年 | 6篇 |
2010年 | 4篇 |
2009年 | 8篇 |
2008年 | 9篇 |
2007年 | 7篇 |
2006年 | 4篇 |
2005年 | 5篇 |
2004年 | 6篇 |
2003年 | 6篇 |
2002年 | 9篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 10篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1988年 | 5篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 2篇 |
1975年 | 3篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1964年 | 1篇 |
1962年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有196条查询结果,搜索用时 3 毫秒
11.
Social learning strategies (SLSs) are rules specifying the conditions in which it would be adaptive for animals to copy the behaviour of others rather than to persist with a previously established behaviour or to acquire a new behaviour through asocial learning. In behavioural ecology, cultural evolutionary theory and economics, SLSs are studied using a ‘phenotypic gambit’—from a purely functional perspective, without reference to their underlying psychological mechanisms. However, SLSs are described in these fields as if they were implemented by complex, domain-specific, genetically inherited mechanisms of decision-making. In this article, we suggest that it is time to begin investigating the psychology of SLSs, and we initiate this process by examining recent experimental work relating to three groups of strategies: copy when alternative unsuccessful, copy when model successful and copy the majority. In each case, we argue that the reported behaviour could have been mediated by domain-general and taxonomically general psychological mechanisms; specifically, by mechanisms, identified through conditioning experiments, that make associative learning selective. We also suggest experimental manipulations that could be used in future research to resolve more fully the question whether, in non-human animals, SLSs are mediated by domain-general or domain-specific psychological mechanisms. 相似文献
12.
13.
Hsin-Chou Yang Mei-Chu Huang Ling-Hui Li Chien-Hsing Lin Alice LT Yu Mitchell B Diccianni Jer-Yuarn Wu Yuan-Tsong Chen Cathy SJ Fann 《BMC bioinformatics》2008,9(1):196
Background
Microarray-based pooled DNA experiments that combine the merits of DNA pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-effective solution for large-scale genomic/genetic research. However, few publicly shared tools are available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA data. 相似文献14.
Peter B. F. Bergqvist Melvyn P. Heyes †Mogens Bugge Finn Bengtsson 《Journal of neurochemistry》1995,65(5):2235-2240
Abstract: Elevated brain concentrations of the neurotoxin and NMDA receptor agonist quinolinic acid (QUIN) have been demonstrated in portacaval-shunted (PCS) rats, a chronic hepatic encephalopathy (HE) model. Increased brain QUIN levels have also been shown in acute hyperammonemic rats. In the present study, the plasma and brain (neocortical) QUIN levels in chronic PCS rats were investigated. The study also included a single exogenous ammonium acetate (NH4 Ac; 5.2 mmol/kg, i.p.) challenge to precipitate a reversible hepatic coma. Compared with sham-operated controls, chronic PCS rats exhibited decreased rather than increased plasma and brain QUIN levels. The plasma-to-brain QUIN ratio was not found to be altered. The NH4 Ac administration induced coma in all of the PCS rats 20–25 min after the challenge, and this coma was resolved within 60–75 min. No relevant temporal relationship between changes in brain QUIN levels and the neurological status in the PCS rats was observed. Therefore, our results do not support the contention that increased brain QUIN levels per se are involved in the pathogenesis of HE. 相似文献
15.
Heyes DJ Levy C Sakuma M Robertson DL Scrutton NS 《The Journal of biological chemistry》2011,286(13):11849-11854
Protein dynamics are crucial for realizing the catalytic power of enzymes, but how enzymes have evolved to achieve catalysis is unknown. The light-activated enzyme protochlorophyllide oxidoreductase (POR) catalyzes sequential hydride and proton transfers in the photoexcited and ground states, respectively, and is an excellent system for relating the effects of motions to catalysis. Here, we have used the temperature dependence of isotope effects and solvent viscosity measurements to analyze the dynamics coupled to the hydride and proton transfer steps in three cyanobacterial PORs and a related plant enzyme. We have related the dynamic profiles of each enzyme to their evolutionary origin. Motions coupled to light-driven hydride transfer are conserved across all POR enzymes, but those linked to thermally activated proton transfer are variable. Cyanobacterial PORs require complex and solvent-coupled dynamic networks to optimize the proton donor-acceptor distance, but evolutionary pressures appear to have minimized such networks in plant PORs. POR from Gloeobacter violaceus has features of both the cyanobacterial and plant enzymes, suggesting that the dynamic properties have been optimized during the evolution of POR. We infer that the differing trajectories in optimizing a catalytic structure are related to the stringency of the chemistry catalyzed and define a functional adaptation in which active site chemistry is protected from the dynamic effects of distal mutations that might otherwise impact negatively on enzyme catalysis. 相似文献
16.
Pasquier CM; Promponas VI; Varvayannis NJ; Hamodrakas SJ 《Bioinformatics (Oxford, England)》1998,14(8):749-750
Summary : FT is a tool written in C++, which implements the Fourier
analysis method to locate periodicities in aminoacid or DNA sequences. It
is provided for free public use on a WWW server with a Java interface.
Availability : The server address is http://o2.db. uoa.gr/FT Contact :
shamodr@atlas.uoa.gr
相似文献
17.
Proton transfer reactions in native and deionized bacteriorhodopsin upon delipidation and monomerization 下载免费PDF全文
We have investigated the role of the native lipids on bacteriorhodopsin (bR) proton transfer and their connection with the cation-binding role. We observe that both the efficiency of M formation and the kinetics of M rise and decay depend on the lipids and lattice but, as the lipids are removed, the cation binding is a much less important factor for the proton pumping function. Upon 75% delipidation using 3-[(cholamidopropyl)dimethylammonio]-propanesulfonate (CHAPS), the M formation and decay kinetics are much slower than the native, and the efficiency of M formation is approximately 30%-40% that of the native. Upon monomerization of bR by Trition X-100, the efficiency of M recovers close to that of the native (depending on pH), M formation is approximately 10 times faster, and M decay kinetics are comparable to native at pH 7. The same results on the M intermediate are observed if deionized blue bR (deI bbR) is treated with these detergents (with or without pH buffers present), even though deionized blue bR containing all the lipids has no photocycle. This suggests that the cation(s) has a role in native bR that is different than in delipidated or monomerized bR, even so far as to suggest that the cation(s) becomes unimportant to the function as the lipids are removed. 相似文献
18.
Eduard T. Klapwijk Anne-Lise Goddings Stephanie Burnett Heyes Geoffrey Bird Russell M. Viner Sarah-Jayne Blakemore 《Hormones and behavior》2013
This article is part of a Special Issue “Puberty and Adolescence”. 相似文献
19.
L-Kynurenine and quinolinic acid are neuroactive L-tryptophan-kynurenine pathway metabolites of potential importance in pathogenesis and treatment of neurologic disease. To identify precursors of these metabolites in brain, [(2)H(3) ]-L-kynurenine was infused subcutaneously by osmotic pump into three groups of gerbils: controls, CNS-localized immune-activated, and systemically immune-activated. The specific activity of L-kynurenine and quinolinate in blood, brain and systemic tissues at equilibrium was then quantified by mass spectrometry and the results applied to a model of metabolism to differentiate the relative contributions of various metabolic precursors. In control gerbils, 22% of L-kynurenine in brain was derived via local synthesis from L-tryptophan/formylkynurenine versus 78% from L-kynurenine from blood. Quinolinate in brain was derived from several sources, including: local tissue L-tryptophan/formylkynurenine (10%), blood L-kynurenine (35%), blood 3-hydroxykynurenine/3-hydroxyanthranilate (7%), and blood quinolinate (48%). After systemic immune-activation, however, L-kynurenine in brain was derived exclusively from blood, whereas quinolinate in brain was derived from three sources: blood L-kynurenine (52%), blood 3-hydroxykynurenine or 3-hydroxyanthranilate (8%), and blood quinolinate (40%). During CNS-localized immune activation, > 98% of both L-kynurenine and quinolinate were derived via local synthesis in brain. Thus, immune activation and its site determine the sources from which L-kynurenine and quinolinate are synthesized in brain. Successful therapeutic modulation of their concentrations must take into account the metabolic and compartment sources. 相似文献
20.