首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   70篇
  2022年   9篇
  2021年   16篇
  2017年   8篇
  2016年   16篇
  2015年   21篇
  2014年   23篇
  2013年   35篇
  2012年   27篇
  2011年   42篇
  2010年   31篇
  2009年   27篇
  2008年   20篇
  2007年   27篇
  2006年   33篇
  2005年   33篇
  2004年   23篇
  2003年   28篇
  2002年   33篇
  2001年   25篇
  2000年   30篇
  1999年   33篇
  1998年   15篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1992年   7篇
  1991年   9篇
  1989年   8篇
  1988年   8篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   7篇
  1983年   10篇
  1982年   11篇
  1981年   8篇
  1980年   7篇
  1979年   12篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1974年   10篇
  1973年   11篇
  1972年   11篇
  1971年   13篇
  1970年   9篇
  1967年   10篇
  1966年   6篇
  1965年   8篇
  1931年   6篇
排序方式: 共有926条查询结果,搜索用时 15 毫秒
71.
72.
Hewitt SC  Korach KS 《Steroids》2000,65(10-11):551-557
Ovarian steroids have important inter-related roles in many systems and processes required for mammalian reproduction. The female reproductive tract, ovaries, and mammary glands are all targets for both estrogen and progesterone. In addition, the actions of these hormones are intertwined in that, for example, progesterone attenuates the proliferative effect of estrogen in the uterus, whereas estrogen also induces the progesterone receptor (PR) mRNA and protein, thus enhancing progesterone actions. The generation of mice that lacks the progesterone receptor (PRKO) or the estrogen receptoralpha (alphaERKO) has provided numerous insights into the interacting roles of these hormones. The mammary glands of the PRKO mice develop with full epithelial ducts that lack side branching and lobular alveolar structures, whereas the alphaERKO mice develop only an epithelial rudiment. This indicates that estrogen is important for ductal morphogenesis, whereas progesterone is required for ductal branching and alveolar development. Both the alphaERKO and PRKO mice are also anovulatory, but exhibit different causal pathologies. The alphaERKO ovary seems to possess follicles up to the preantral stage and shows a polycystic phenotype as a result of chronic hyperstimulation by LH. The PRKO follicles seem to develop to an ovulatory stage, but are unable to rupture, indicating a role for progesterone in ovulation. The uteri of these two strains seem to develop normally; however, the function and hormone responses are abnormal in each. Because estrogen is known to induce PRs in the uterus, the progesterone responsiveness of the alphaERKO uterus was characterized. PR mRNA was detected but was not up-regulated by estrogen in the alphaERKO tissue. PRs are present in the alphaERKO tissue at 60% of the level in wild-type tissue and show a similar amount of A and B isoforms when measured by R5020 binding and detected by Western blotting. The PRs were able to mediate induction of two progesterone-responsive uterine genes: calcitonin and amphiregulin. The alphaERKO uterine tissue was also able to undergo a decidual reaction in response to hormonal and intraluminal treatments to mimic implantation; however, unlike normal wild-type uteri, this response was estrogen independent in the alphaERKO uterine tissue.  相似文献   
73.
With the increased awareness of the problems associated with the growth dependent analysis of bacterial populations, direct optical detection methods such as flow cytometry have enjoyed increased popularity over the last few years. Among the analyses discussed here are: (1) Bacterial discrimination from other particles on the basis of nucleic acid staining, using sample disaggregation to provide fast reliable enumeration while minimizing data artefacts due to post sampling growth; (2) Determination of basic cell functions such as reproductive ability, metabolic activity and membrane integrity, to characterise the physiological state or degree of viability of bacteria; and (3) The use of single cell sorting onto agar plates, microscope slides or into multi-well plates to correlate viability as determined by cell growth with fluorescent labelling techniques. Simultaneous staining with different fluorochromes provides an extremely powerful way to demonstrate culture heterogeneity, and also to understand the functional differences revealed by each stain in practical applications. Analysis of bacterial fermentations showed a considerable drop (20%) in membrane potential and integrity during the latter stages of small scale (5L), well mixed fed-batch fermentations. These changes, not found in either batch or continuous culture fermentations, are probably due to the severe, steadily increasing stress associated with glucose limitation during the fed-batch process, suggesting 'on-line' flow cytometry could improve process control. Heat injured cells can already show up to 4 log of differences in recovery in different pre-enrichment media, thus contributing to the problem of viable but non-culturable cells (VBNC's). Cytometric cell sorting demonstrated decreasing recovery with increasing loss of membrane function. However, a new medium protecting the cells from intracellular and extracellular causes of oxidative stress improved recovery considerably. Actively respiring cells showed much higher recovery improvement than the other populations, demonstrating for the first time the contribution of oxidative respiration to intracellular causes of damage as a key part of the VBNC problem. Finally, absolute and relative frequencies of one species in a complex population were determined using immunofluorescent labelling in combination with the analysis of cell function. The detail and precision of multiparameter flow cytometric measurements of cell function at the single cell level now raise questions regarding the validity of classical, growth dependent viability assessment methods.  相似文献   
74.
Continuous culture fermentations of Escherichia coli W3110 have been carried out at controlled dissolved oxygen levels of 40% and 10% of saturation. Satisfactory and reproducible results were obtained. Agitation speeds of 400 and 1200 rpm at an aeration rate of 1 vvm have been used as well as an aeration rate of 3 vvm at 400 rpm. The upper levels of these variables represent much higher agitation and aeration intensities than those normally used in practical fermentations. The fermentations were monitored by mass spectrometry and optical density, and cell samples were studied by flow cytometry, SEM, and TEM. Protocols were developed so the state of both cell membranes and cell size could be measured by flow cytometry. Under all the conditions of agitation and aeration, flow cytometric analysis indicated that both cell membranes were intact and that a cytoplasmic membrane potential existed; also the cell size did not change, results confirmed by SEM and TEM. There were no detectable changes in off-gas analysis or optical density during the continuous fermentation nor in the cell structure as revealed by SEM or TEM, except at the highest agitation intensity. Under the latter conditions, after 7 h, the outer polysaccharide layer on the cell was stripped away. It is concluded that any changes in biological performance of this E. coli cell line due to variations in agitation or aeration intensity or scale of operation cannot be attributed to fluid dynamic stresses associated with the turbulence generated by impellers or with bursting bubbles.  相似文献   
75.
Acinetobacter johnsonii has potential use in the remediation of heavy metal-contaminated wastewaters. For metal accumulation, cells must remain intact and metabolically active. The effect of possible accumulation targets, Cd2+, UO2 2+, Cu2+, and Ni2+ on cytoplasmic membrane integrity and polarity was investigated by flow cytometry using a mixture of two fluorescent dyes, propidium iodide and bis-oxonol. The former binds to DNA but cannot cross an intact cytoplasmic membrane, whilst the latter is anionic, lipophilic and stains depolarized cytoplasmic membranes. All four metals permeabilized the cytoplasmic membrane of some cells during the period of exposure. The effects of the metals differed in that Cu2+ and Cd2+ also generated an intermediate population of cells, having intact but depolarized cytoplasmic membranes. Electron microscopy showed corresponding cellular abnormalities following metal exposure. © Rapid Science Ltd. 1998  相似文献   
76.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   
77.
The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.  相似文献   
78.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   
79.
Using behavioral genetic analyses, we investigated and present a possible relationship between adolescent alcohol use and six domains of common problem behaviors in a community-based sample of 633 twin pairs who were under the legal drinking age of 21 (mean age = 15.0 years). The underlying etiology of the six problem behavioral domains, classified as conduct problems, hyperactivity, school problems, low self-esteem, neuroticism, and social withdrawal, was previously described (Siewert et al., 2003) as two heritable and genetically distinct dimensions of problem behavior. We took the two best-fitting models from that study (one that proposed a generalized behavior problem factor along with an internalizing behavior factor, and one that proposed an externalizing behavior factor along with an internalizing behavior factor) and extended the analyses in this study to include an index of alcohol use. Our results suggest that there is a strong genetic relationship between adolescent alcohol use and a broad spectrum of both externalizing and internalizing behavioral problems. The individual who seems to be at risk for either generalized or specifically externalizing behavioral problems is also at risk for adolescent alcohol use. However, the individual who exhibits internalizing problem behaviors appears to be protected from adolescent alcohol use. We propose that adolescent alcohol consumption needs to be understood in the context of these genetically influenced externalizing and internalizing propensities.  相似文献   
80.
Abstract  The pink sugarcane mealy bug (PSMB; Saccharicoccus sacchari ) is widespread on sugarcane globally. PSMB infest above-ground storage tissue as it develops, feeding on phloem and producing exudate. It is not known, however, whether the level of infestations is the same in different sugar growing regions, or how population size varies year to year within a region. Field surveys of the number of nodes infested were conducted over five seasons in three mill-regions in northern Australia (Macknade, Kalamia and Marian) on plant and ratoon crops. The pattern of infestation was very similar across seasons (only in 1 year of very low rainfall was the increase in population delayed). In all three regions the proportion of nodes infested was similar but reached the maximum 1 month later in the Marian region compared with the Kalamia and Macknade regions. The Kalamia region was distinguished by the rapid decline in the number of nodes infested down to a very low level by March. In the Macknade region mealy bugs persisted at higher levels than the other two regions. The PSMB infestation started earlier and was much greater in ratoon crops than plant crops throughout the sampling period. The differences were more pronounced in the Macknade and Marian districts. These observations provide a firm basis from which future strategies to control PSMB can be developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号