首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   25篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   11篇
  2012年   14篇
  2011年   13篇
  2010年   11篇
  2009年   10篇
  2008年   9篇
  2007年   12篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
111.
The physiology and molecular regulation of phosphorus (P) remobilization from vegetative tissues to grains during grain filling is poorly understood, despite the pivotal role it plays in the global P cycle. To test the hypothesis that a subset of genes involved in the P starvation response are involved in remobilization of P from flag leaves to developing grains, we conducted an RNA‐seq analysis of rice flag leaves during the preremobilization phase (6 DAA) and when the leaves were acting as a P source (15 DAA). Several genes that respond to phosphate starvation, including three purple acid phosphatases (OsPAP3, OsPAP9b and OsPAP10a), were significantly up‐regulated at 15 DAA, consistent with a role in remobilization of P from flag leaves during grain filling. A number of genes that have not been implicated in the phosphate starvation response, OsPAP26, SPX‐MFS1 (a putative P transporter) and SPX‐MFS2, also showed expression profiles consistent with involvement in P remobilization from senescing flag leaves. Metabolic pathway analysis using the KEGG system suggested plastid membrane lipid synthesis is a critical process during the P remobilization phase. In particular, the up‐regulation of OsPLDz2 and OsSQD2 at 15 DAA suggested phospholipids were being degraded and replaced by other lipids to enable continued cellular function while liberating P for export to developing grains. Three genes associated with RNA degradation that have not previously been implicated in the P starvation response also showed expression profiles consistent with a role in P mobilization from senescing flag leaves.  相似文献   
112.
The symbiosis of plants with arbuscular mycorrhizal fungi (AMF) may become parasitic if the cost:benefit ratio (carbon:phosphorus ratio) increases. In case of mycorrhizal parasitism, a plant may prevent growth depression through the reduction of root colonization as a form of control over the symbiosis. In this greenhouse study, we attempted to manipulate the cost:benefit ratio of the arbuscular mycorrhizal symbiosis by shading and/or phosphorus (P) fertilization in the differentially mycotrophic plant species Hieracium pilosella and Corynephorus canescens. By repeated sampling of soil cores, we assessed the temporal progress of plant investment towards mycorrhizal structures as a measure of plant control over the AMF. Unexpectedly, we found no obvious treatment effects on mycorrhizal growth dependency (MGD), most likely caused by constant N-limitation in AM plants being enhanced by P-fertilization and shade probably not exacerbating plant C-budget for AMF. This highlights the importance of N:P:C stoichiometry for the outcome of the symbiosis. Nevertheless, we found possible control mechanisms in shaded H. pilosella, with considerably higher resource investments into root than into hyphal growth, while root colonization was only marginally suppressed. This control only manifested after 4 weeks of growth under potentially detrimental conditions, emphasizing the importance of time in plant control over the arbuscular mycorrhizal symbiosis. In contrast, the less mycotrophic C. canescens did not exhibit obvious changes in mycorrhizal investments in reaction to shading and P-fertilization, possibly because the low mycotrophy and AMF colonization already imposes a functioning control mechanism in this species. Our study suggests that highly mycotrophic plants may have a stronger need to keep AMF in check than less mycotrophic plants, which may have implications for the role of mycotrophy in the outcome of symbiotic interactions in natural situations.  相似文献   
113.
Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non‐diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na+ and Cl), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non‐stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non‐photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non‐stomatal limitation. A higher proportion of non‐cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non‐diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors.  相似文献   
114.
A model is proposed for the timing of rapid bimanual movements. It combines (a) the notion of a generalized motor program (GMP) with invariant relative timing, (b) the two-level concept of timing control with a central level of control and a peripheral level where the observations are made, and (c) the hypothesis that a single GMP simultaneously controls both limbs. Our method is based on the analysis of temporal intervals measured among landmarks taken from the bimanual kinematic traces. We show that sets of tetrad ratios — each composed of two pairs of covariances among four temporal intervals in the actions — should be equal to 1.0 if the hypothesis is correct. In addition, we show that these tetrad ratios should deviate systematically from 1.0 under certain, biologically realizable violations of the model. Data from human subjects show that the results generally conform to the basic model. Simulations are used to illustrate other violations of the model and to explore characteristics of the sampling distribution of the tetrad ratios under the model.  相似文献   
115.
BioJava: an open-source framework for bioinformatics   总被引:1,自引:0,他引:1  
SUMMARY: BioJava is a mature open-source project that provides a framework for processing of biological data. BioJava contains powerful analysis and statistical routines, tools for parsing common file formats and packages for manipulating sequences and 3D structures. It enables rapid bioinformatics application development in the Java programming language. AVAILABILITY: BioJava is an open-source project distributed under the Lesser GPL (LGPL). BioJava can be downloaded from the BioJava website (http://www.biojava.org). BioJava requires Java 1.5 or higher. All queries should be directed to the BioJava mailing lists. Details are available at http://biojava.org/wiki/BioJava:MailingLists.  相似文献   
116.
117.

Background

As a prerequisite for thyroid hormone (TH) metabolism and action TH has to be transported into cells where TH deiodinases and receptors are located. The trans-membrane passage of TH is facilitated by TH transporters of which the monocarboxylate transporter MCT8 has been most intensively studied. Inactivating mutations in the gene encoding MCT8 are associated with a severe form of psychomotor retardation and abnormal serum TH levels (Allan–Herndon–Dudley syndrome). In order to define the underlying pathogenic mechanisms, Mct8 knockout mice have been generated and intensively studied. Most surprisingly, Mct8 ko mice do not show any neurological symptoms but fully replicate the abnormal serum thyroid state.

Scope of review

We will summarize the findings of these mouse studies that shed light on various aspects of Mct8 deficiency and unambiguously demonstrated the pivotal role of Mct8 in mediating TH transport in various tissues. These studies have also revealed the presence of the complex interplay between different pathogenic mechanisms that contribute to the generation of the abnormal TH serum profile.

Major conclusions

Most importantly, studies of Mct8 ko mice indicated the presence of additional TH transporters that act in concert with Mct8. Interesting candidates for such a function are the L-type amino acid transporters Lat1 and Lat2 as well as the organic anion transporting polypeptide Oatp1c1.

General significance

Overall, the analysis of Mct8 deficient mice has greatly expanded our knowledge about the (patho-) physiological function of this transporter and established a sound basis for the characterization of additional TH transporter candidates. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   
118.

Background

Rice is the world''s most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots.

Scope

This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars.

Conclusions

Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.  相似文献   
119.
A novel approach to the design of sensitive fluorescent probes for nucleic acids detection is proposed. Suitable modifications of tri- and pentamethine cyanine dyes in the polymethine chain and/or in the heterocyclic residues can result in a significant decrease in unbound dye fluorescence intensity and an increase in dye emission intensity in the presence of DNA compared to the unsubstituted dye. The sharp enhancement in the fluorescence intensity upon dye interaction with double-stranded DNA permits the application of the modified tri- and pentamethine dyes as fluorescent probes in double-stranded DNA detection in homogeneous assays.  相似文献   
120.
The major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted. The markers were tested in more than 80 diverse rice accessions revealing three main groups with different Pup1 allele constitution. Accessions with tolerant (group I) and intolerant (group III) Pup1 alleles were distinguished from genotypes with Kasalath alleles at some of the analyzed loci (partial Pup1; group II). A germplasm survey additionally confirmed earlier data showing that Pup1 is largely absent from irrigated rice varieties but conserved in varieties and breeding lines adapted to drought-prone environments. A core set of Pup1 markers has been defined, and sequence polymorphisms suitable for single-nucleotide polymorphism marker development for high-throughput genotyping were identified. Following a marker-assisted backcrossing approach, Pup1 was introgressed into two irrigated rice varieties and three Indonesian upland varieties. First phenotypic evaluations of the introgression lines suggest that Pup1 is effective in different genetic backgrounds and environments and that it has the potential to significantly enhance grain yield under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号