首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   162篇
  国内免费   14篇
  2023年   17篇
  2022年   36篇
  2021年   142篇
  2020年   64篇
  2019年   64篇
  2018年   72篇
  2017年   68篇
  2016年   92篇
  2015年   132篇
  2014年   171篇
  2013年   188篇
  2012年   186篇
  2011年   165篇
  2010年   123篇
  2009年   93篇
  2008年   107篇
  2007年   125篇
  2006年   106篇
  2005年   83篇
  2004年   75篇
  2003年   70篇
  2002年   70篇
  2001年   52篇
  2000年   49篇
  1999年   49篇
  1998年   12篇
  1997年   17篇
  1996年   15篇
  1995年   17篇
  1994年   10篇
  1993年   13篇
  1992年   25篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   18篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   16篇
  1983年   12篇
  1982年   13篇
  1980年   8篇
  1978年   11篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1973年   8篇
  1971年   6篇
  1967年   9篇
排序方式: 共有2721条查询结果,搜索用时 453 毫秒
91.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing, derived from prokaryotic immunity system, is rapidly emerging as an alternative platform for introducing targeted alterations in genomes. The CRISPR-based tools have been deployed for several other applications including gene expression studies, detection of mutation patterns in genomes, epigenetic regulation, chromatin imaging, etc. Unlike the traditional genetic engineering approaches, it is simple, cost-effective, and highly specific in inducing genetic variations. Despite its popularity, the technology has limitations such as off-targets, low mutagenesis efficiency, and its dependency on in-vitro regeneration protocols for the recovery of stable plant lines. Several other issues such as persisted CRISPR activity in subsequent generations, the potential for transferring to its wild type population, the risk of reversion of edited version to its original phenotype particularly in cross-pollinated plant species when released into the environment and the scarcity of validated targets have been overlooked. This article briefly highlights these undermined aspects, which may challenge the wider applications of this platform for improving crop genetics.  相似文献   
92.
Calcineurin is the only known calmodulin (CaM) activated protein phosphatase, which is involved in the regulation of numerous cellular and developmental processes and in calcium-dependent signal transduction. Although commonly assumed that CaM displaces the autoinhibitory domain (AID) blocking substrate access to its active site, the structural basis underlying activation remains elusive. We have created a fused ternary complex (CBA) by covalently linking three polypeptides: CaM, calcineurin regulatory B subunit (CnB) and calcineurin catalytic A subunit (CnA). CBA catalytic activity is comparable to that of fully activated native calcineurin in the presence of CaM. The crystal structure showed virtually no structural change in the active site and no evidence of CaM despite being covalently linked. The asymmetric unit contains four molecules; two parallel CBA pairs are packed in an antiparallel mode and the large cavities in crystal packing near the calcineurin active site would easily accommodate multiple positions of AID-bound CaM. Intriguingly, the conformation of the ordered segment of AID is not altered by CaM; thus, it is the disordered part of AID, which resumes a regular α-helical conformation upon binding to CaM, which is displaced by CaM for activation. We propose that the structural basis of calcineurin activation by CaM is through displacement of the disordered fragment of AID which otherwise impedes active site access.  相似文献   
93.
94.
Hoolock gibbons (genus Hoolock) are a group of very endangered primate species that belong to the small ape family (family Hylobatidae). The entire population that is distributed in the northeast and southeast of Bangladesh is estimated to include only around 350 individuals. A conservation program is thus necessary as soon as possible. Genetic markers are significant tools for planning such programs. In this study, we examined chromosomal characteristics of two western hoolock gibbons that were captured in a Bangladesh forest. During chromosome analysis, we encountered two chromosome variations that were observed for the first time in the wild-born western hoolock gibbons (Hoolock hoolock). The first one was a nonhomologous centromere position in chromosome 8 that was observed in the two examined individuals. The alteration was identical in the two individuals, which were examined by G-band and DAPI-band analyses. Chromosome paint analyses revealed that the difference in the centromere position was due to a single small pericentric inversion. The second variation was a heterozygous elongation in chromosome 9. Analysis by sequential techniques of fluorescence in situ hybridization with 18S rDNA and silver nitrate staining revealed a single and an inverted tandem duplication, respectively, of the nucleolus organizer region in two individuals. These chromosome variations provide useful information for the next steps to consider the evolution and conservation of the hoolock gibbon.  相似文献   
95.
The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure.  相似文献   
96.
Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 cisΔ9,12,15), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7–6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3–M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops.  相似文献   
97.
Deficiency of 5-methyltetrahydrofolate (5-MTHF) in cerebrospinal fluid (CSF) is associated with a number of neurometabolic conditions including mitochondrial electron transport chain defects. Whilst failure of the active transport of 5-methyltetrahydrofolate (5-MTHF) into the CSF compartment has been proposed as a potential mechanism responsible for the 5-MTHF deficiency seen in mitochondrial disorders, it is becoming increasingly clear that other mechanisms are involved. Here, we have considered the role of oxidative stress as a contributing mechanism. Concerning, ascorbic acid (AA), we have established a CSF reference range (103–303 μM) and demonstrated a significant positive correlation between 5-MTHF and AA. Furthermore, CSF itself was also shown to convey antioxidant properties towards 5-MTHF. However, this protection could be overcome by the introduction of a hydroxyl radical generating system. Using a neuronal model system, inhibition of mitochondrial complex I, by 58%, was associated with a 23% increase in superoxide generation and a significantly increased loss of 5-MTHF from the extracellular medium. Addition of AA (150 μM) was able to prevent this increased 5-MTHF catabolism. We conclude that increased generation of reactive oxygen species and/or loss of CSF antioxidants are also factors to consider with regard to the development of a central 5-MTHF deficiency. Co-supplementation of AA together with appropriate folate replacement may be of therapeutic benefit.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号