首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   70篇
  2021年   15篇
  2020年   9篇
  2019年   9篇
  2018年   17篇
  2017年   17篇
  2016年   26篇
  2015年   21篇
  2014年   36篇
  2013年   39篇
  2012年   44篇
  2011年   51篇
  2010年   31篇
  2009年   25篇
  2008年   37篇
  2007年   34篇
  2006年   21篇
  2005年   32篇
  2004年   35篇
  2003年   31篇
  2002年   20篇
  2001年   14篇
  2000年   24篇
  1999年   12篇
  1998年   13篇
  1997年   10篇
  1996年   13篇
  1995年   6篇
  1994年   12篇
  1991年   7篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1986年   14篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1976年   7篇
  1970年   6篇
  1955年   7篇
  1953年   8篇
  1952年   6篇
  1940年   6篇
  1933年   5篇
  1932年   7篇
  1930年   7篇
  1929年   7篇
  1926年   10篇
排序方式: 共有930条查询结果,搜索用时 15 毫秒
41.
The expression and impact of maternal effects may vary greatly between populations and environments. However, little is known about large‐scale geographical patterns of variation in maternal deposition to eggs. In birds, as in other oviparous animals, the outermost maternal component of an egg is the shell, which protects the embryo, provides essential mineral resources and allows its interaction with the environment in the form of gas exchange. In this study, we explored variation of eggshell traits (mass, thickness, pore density and pigmentation) across 15 pied flycatcher populations at a large geographic scale. We found significant between‐population variation in all eggshell traits, except in pore density, suggesting spatial variation in their adaptive benefits or in the females’ physiological limitations during egg laying. Between‐ population variation in shell structure was not due to geographic location (latitude and longitude) or habitat type. However, eggshells were thicker in populations that experienced higher ambient temperature during egg laying. This could be a result of maternal resource allocation to the shell being constrained under low temperatures or of an adaptation to reduce egg water loss under high temperatures. We also found that eggshell colour intensity was positively associated with biliverdin pigment concentration, shell thickness and pore density. To conclude, our findings reveal large‐ scale between‐population variation of eggshell traits, although we found little environmental dependency in their expression. Our findings call for further studies that explore other environmental factors (e.g. calcium availability and pollution levels) and social factors like sexual selection intensity that may account for differences in shell structure between populations.  相似文献   
42.
43.
44.
45.
46.
Hiller E  Heine S  Brunner H  Rupp S 《Eukaryotic cell》2007,6(11):2056-2065
The SUN gene family has been defined in Saccharomyces cerevisiae and comprises a fungus-specific family of proteins which show high similarity in their C-terminal domains. Genes of this family are involved in different cellular processes, like DNA replication, aging, mitochondrial biogenesis, and cytokinesis. In Candida albicans the SUN family comprises two genes, SUN41 and SIM1. We demonstrate that C. albicans mutants lacking SUN41 show similar defects as found for S. cerevisiae, including defects in cytokinesis. In addition, the SUN41 mutant showed a higher sensitivity towards the cell wall-disturbing agent Congo red, whereas no difference was observed in the presence of calcofluor white. Compared to the wild type, SUN41 deletion strains exhibited a defect in biofilm formation, a reduced adherence on a Caco-2 cell monolayer, and were unable to form hyphae on solid medium under the conditions tested. Interestingly, Sun41p was found to be secreted in the medium of cells growing as blastospores as well as those forming hyphae. Our results support a function of SUN41p as a glycosidase involved in cytokinesis, cell wall biogenesis, adhesion to host tissue, and biofilm formation, indicating an important role in the host-pathogen interaction.  相似文献   
47.
Cell type-specific lectin binding is a useful tool for the analysis of developing systems. We describe the binding pattern of 21 different fluorescein isothiocyanate (FITC)-labelled lectins to the testis of two model teleost species, the medaka (Oryzias latipes) and the tilapia (Oreochromis niloticus). The analysis of the binding pattern was carried out on tissue sections (medaka and tilapia) and using primary culture cells (only tilapia). Lectin binding was studied by confocal microscopy and for histological analysis some sections were, in addition, stained with bodipy to gain additional information concerning the cytological organization of the cystic mode of spermatogenesis in fish. The observed differences in lectin staining of different cell types in primary cultures were quantified by flow cytometry. Only few lectins bound specifically to haploid cells while the reaction to diploid or tetraploid cells was generally stronger. However, the extracellular material around the haploid spermatids and spermatozoa in spermatocysts showed a strong staining reaction with several lectins (e.g., Phaseolus vulgaris Erythro agglutinin). The apparent differences in the cellular lectin-binding pattern can be used to identify particular cell types, to monitor their differentiation in vitro or to enrich particular cell types from heterogeneous cultures using magnetic beads coated with anti-FITC antibodies. Using the latter approach, we show that it is possible to enrich for gonial cells and at the same time deplete the preparation for haploid cells and Sertoli cells.  相似文献   
48.
Friedl Weber 《Protoplasma》1938,31(1):289-292
Ohne Zusammenfassung  相似文献   
49.
50.
Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C2C12 murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Nav1.5 compared with the skeletal muscle isoform Nav1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties. muscle plasticity; myosin heavy chain expression; sodium channel expression  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号