全文获取类型
收费全文 | 171篇 |
免费 | 22篇 |
专业分类
193篇 |
出版年
2024年 | 1篇 |
2023年 | 5篇 |
2022年 | 1篇 |
2021年 | 6篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 6篇 |
2013年 | 15篇 |
2012年 | 16篇 |
2011年 | 12篇 |
2010年 | 16篇 |
2009年 | 14篇 |
2008年 | 4篇 |
2007年 | 12篇 |
2006年 | 5篇 |
2005年 | 12篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有193条查询结果,搜索用时 15 毫秒
91.
Ellen Cocquyt Heroen Verbruggen Frederik Leliaert Frederick W Zechman Koen Sabbe Olivier De Clerck 《BMC evolutionary biology》2009,9(1):39
Background
Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1α is found, and the Streptophyta possess EF-1α except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models. 相似文献92.
93.
Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta) 下载免费PDF全文
Monica Orlandi Paiano Andrea Del Cortona Joana F. Costa Shao‐Lun Liu Heroen Verbruggen Olivier De Clerck Orlando Necchi Jr 《Journal of phycology》2018,54(1):25-33
Little is known about genome organization in members of the order Batrachospermales, and the infra‐ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra‐ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene‐dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein‐coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling. 相似文献
94.
Serdons K Verduyckt T Cleynhens J Terwinghe C Mortelmans L Bormans G Verbruggen A 《Bioorganic & medicinal chemistry letters》2007,17(22):6086-6090
We have conjugated S,S'-bis-trityl-N-BOC-N'-acetic acid-1,2-ethylenedicysteamine, a protected bis-amino-bis-thiol (BAT) tetraligand, with 2-(4'-aminophenyl)-1,3-benzothiazole, a derivative of thioflavin-T with known affinity for amyloid. The conjugate was efficiently labelled with (99m)Tc by heating of the protected precursor in diluted hydrochloric acid followed by neutralization and heating in the presence of (99m)Tc-tartrate. It was demonstrated that the (99m)Tc-BAT-phenylbenzothiazole conjugate binds in vitro to amyloid beta present in postmortem brain slices of Alzheimer's patients. Despite its high lipophilicity and neutral character, the radiolabelled conjugate did not cross the blood-brain barrier to a sufficient degree and therefore is not useful for detection of Alzheimer's disease. Further evaluation of this (99m)Tc-labelled tracer agent could elucidate its potential usefulness to visualize amyloid plaques in peripheral amyloidosis. 相似文献
95.
Hélène Lequeux Christian Hermans Stanley Lutts Nathalie Verbruggen 《Plant Physiology and Biochemistry》2010,48(8):673-682
Growth, in particular reorganization of the root system architecture, mineral homeostasis and root hormone distribution were studied in Arabidopsis thaliana upon copper excess. Five-week-old Arabidopsis plants growing in hydroponics were exposed to different Cu2+ concentrations (up to 5 μM). Root biomass was more severely inhibited than shoot biomass and Cu was mainly retained in roots. Cu2+ excess also induced important changes in the ionome. In roots, Mg, Ca, Fe and Zn concentrations increased, whereas K and S decreased. Shoot K, Ca, P, and Mn concentrations decreased upon Cu2+ exposure. Further, experiments with seedlings vertically grown on agar were carried out to investigate the root architecture changes. Increasing Cu2+ concentrations (up to 50 μM) reduced the primary root growth and increased the density of short lateral roots. Experiment of split-root system emphasized a local toxicity of Cu2+ on the root system. Observations of GUS reporter lines suggested changes in auxin and cytokinin accumulations and in mitotic activity within the primary and secondary root tips treated with Cu2+. At toxic Cu2+ concentrations (50 μM), these responses were accompanied by higher root apical meristem death. Contrary to previous reports, growth on high Cu2+ did not induce an ethylene production. Finally lignin deposition was detected in Cu2+-treated roots, probably impacting on the translocation of nutrients. The effects on mineral profile, hormonal status, mitotic activity, cell viability and lignin deposition changes on the Cu2+-induced reorganization of the root system architecture are discussed. 相似文献
96.
97.
Azetidine-2-carboxylic acid, the 4-membered ring noranalogue of proline, is regularly used in the study of proline metabolism as well as the study of protein conformation. We prepared D,L-[2,3-3H]azetidine-2-carboxylic acid with an optimized 10% yield from commercially available 4-amino-[2,3-3H]butyric acid. Purification was performed by fast-protein liquid chromatography. The biological activity was checked in both Arabidopsis thaliana and Escherichia coli. The obtained specific activity of 10 mCi/mmol was sufficient for most uptake and incorporation studies. 相似文献
98.
Hassan Ahmadi Massimiliano Corso Michael Weber Nathalie Verbruggen Stephan Clemens 《Plant, cell & environment》2018,41(10):2435-2448
The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from Arabidopsis lyrata × A. halleri crosses revealed three quantitative trait loci for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca2+/H+ antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1‐silenced lines. Upon Cd2+ exposure, several‐fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1‐silenced plants. In accordance with the dependence of Cdtol2 on external Ca2+ concentration, this phenotype was exclusively observed in low Ca2+ conditions. The effects of external Ca2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd‐elicited ROS production triggering further Ca2+‐dependent ROS accumulation. 相似文献
99.
Erik Verbruggen Eiko E. Kuramae Remy Hillekens Mattias de Hollander E. Toby Kiers Wilfred F. M. R?ling George A. Kowalchuk Marcel G. A. van der Heijden 《Applied and environmental microbiology》2012,78(20):7384-7392
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. 相似文献
100.
Verbruggen E El Mouden C Jansa J Akkermans G Bücking H West SA Kiers ET 《The American naturalist》2012,179(5):E133-E146
Explaining mutualistic cooperation between species remains a major challenge for evolutionary biology. Why cooperate if defection potentially reaps greater benefits? It is commonly assumed that spatial structure (limited dispersal) aligns the interests of mutualistic partners. But does spatial structure consistently promote cooperation? Here, we formally model the role of spatial structure in maintaining mutualism. We show theoretically that spatial structure can actually disfavor cooperation by limiting the suite of potential partners. The effect of spatial structuring depends on the scale (fine or coarse level) at which hosts reward their partners. We then test our predictions by using molecular methods to track the abundance of competing, closely related, cooperative, and less cooperative arbuscular mycorrhizal (AM) fungal symbionts on host roots over multiple generations. We find that when spatial structure is reduced by mixing soil, the relative success of the more cooperative AM fungal species increases. This challenges previous suggestions that high spatial structuring is critical for stabilizing cooperation in the mycorrhizal mutualism. More generally, our results show, both theoretically and empirically, that contrary to expectations, spatial structuring can select against cooperation. 相似文献