首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   22篇
  193篇
  2024年   1篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   15篇
  2012年   16篇
  2011年   12篇
  2010年   16篇
  2009年   14篇
  2008年   4篇
  2007年   12篇
  2006年   5篇
  2005年   12篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
171.
Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific‐ versus heterospecific‐trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF.  相似文献   
172.
173.
Molecular analyses, in combination with morphological studies, provide invaluable tools for delineating red algal taxa. However, molecular datasets are incomplete and taxonomic revisions are often required once additional species or populations are sequenced. The small red alga Conferva parasitica was described from the British Isles in 1762 and then reported from other parts of Europe. Conferva parasitica was traditionally included in the genus Pterosiphonia (type species P. cloiophylla in Schmitz and Falkenberg 1897), based on its morphological characters, and later transferred to Symphyocladia and finally to Symphyocladiella using molecular data from an Iberian specimen. However, although morphological differences have been observed between specimens of Symphyocladiella parasitica from northern and southern Europe they have yet to be investigated in a phylogenetic context. In this study, we collected specimens from both regions, studied their morphology and analyzed rbcL and cox1 DNA sequences. We determined the phylogenetic position of a British specimen using a phylogenomic approach based on mitochondrial and plastid genomes. Northern and southern European populations attributed to S. parasitica represent different species. Symphyocladiella arecina sp. nov. is proposed for specimens from southern Europe, but British specimens were resolved as a distant sister lineage to the morphologically distinctive Amplisiphonia, so we propose the new genus Deltalsia for this species. Our study highlights the relevance of using materials collected close to the type localities for taxonomic reassessments, and showcases the utility of genome-based phylogenies for resolving classification issues in the red algae.  相似文献   
174.
Proline accumulation in plants: a review   总被引:9,自引:0,他引:9  
Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.  相似文献   
175.
For the currently used (99m)Tc-labeled diphosphonates such as (99m)Tc-MDP and (99m)Tc-HDP, the required interval of 2.5 to 3 h between injection and the scintigraphic bone imaging is an inconvenience. The present study was set up in an attempt to develop a technetium-99m-labeled diphosphonate with efficient bone uptake and more rapid clearance from blood and soft tissue by renal extraction and excretion so that it would be possible to start imaging as early as 1 h after injection. A conjugate of the new renal tracer agent (99m)Tc-ethylene dicysteine ((99m)Tc-L,L-EC), covalently bound via one of its carboxylates with aminomethylenediphosphonic acid (AMDP), was synthesized in seven steps. EC-AMDP could be labeled easily and efficiently with (99m)Tc at pH > or = 12 and room temperature. Analysis using ion pair reversed phase high performance liquid chromatography showed the formation of a mixture of two main compounds with reproducible relative ratios, which were stable as a function of time. In a baboon, the scintigraphic images obtained with the new agent showed good quality bone scans, with clear visualization of the skeleton and low soft tissue activity at respectively 1 and 2 h after injection.  相似文献   
176.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   
177.
Nuclear ribosomal and plastid DNA sequences of specimens belonging to section Halimeda of the pantropical green seaweed genus Halimeda show that the group under scrutiny contains many more genetically delineable species than those recognized by classical taxonomy. Discordances between phylograms inferred from nuclear and plastid DNA sequences suggest that reticulate evolution has been involved in speciation within the clade. Nonetheless, our data do not allow ruling out certain alternative explanations for the discordances. Several pseudo-cryptic species are restricted to the margins of the generic distribution range. In a clade of H. cuneata sibling species from widely separated subtropical localities in the Indian Ocean, the South African sibling branches off first, leaving the Arabian and West Australian species as closest relatives. We hypothesize that geographic isolation of the siblings may have taken place following Pleistocene or Pliocene periods of climatic cooling during which subtropical species occupied larger distribution ranges. A more basal separation of Atlantic, Indo-Pacific, and Mediterranean species indicates vicariance. The alternative events that could have caused this vicariance are discussed.  相似文献   
178.
Laboratoire de Physiologie et Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine (CP 242) Bd du triomphe, B-1050 Brussels, Belgium.  相似文献   
179.
Magnesium deficiency has been reported to affect plant growth and biomass partitioning between root and shoot. The present work aims to identify how Mg deficiency alters carbon partitioning in sugar beet (Beta vulgaris L.) plants. Fresh biomass, Mg and sugar contents were followed in diverse organs over 20 days under Mg-sufficient and Mg-deficient conditions. At the end of the treatment, the aerial biomass, but not the root biomass, of Mg-deficient plants was lower compared to control plants. A clear inverse relationship between Mg and sugar contents in leaves was found. Mg deficiency promoted a marked increase in sucrose and starch accumulation in the uppermost expanded leaves, which also had the lowest content of Mg among all the leaves of the rosette. The oldest leaves maintained a higher Mg content. [14C]Sucrose labelling showed that sucrose export from the uppermost expanded leaves was inhibited. In contrast, sucrose export from the oldest leaves, which are close to, and export mainly to, the roots, was not restricted. In response to Mg deficiency, the BvSUT1 gene encoding a companion cell sucrose/H+ symporter was induced in the uppermost expanded leaves, but without further enhancement of sucrose loading into the phloem. The observed increase in BvSUT1 gene expression supports the idea that sucrose loading into the phloem is defective, resulting in its accumulation in the leaf.  相似文献   
180.
N-(2-Mercapto-propyl)-1,2-phenylenediamine (MPPDA) and N-beta-aminoethylglycine (AEG) were labelled with 99mTc(CO)3(+) to form the neutral complexes [99mTc(CO)3(MPPDA)] and [99mTc(CO)3(AEG)]. Both complexes were formed in excellent yields and their identity was confirmed by LC-MS. In mice, none of the new tracer agents showed brain uptake. [(99m)Tc(CO)3(MPPDA)] was trapped mainly in the liver and excreted via the hepatobiliary system, whereas [99mTc(CO)3(AEG)] was excreted rapidly via the kidneys to the urine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号