首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   25篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   9篇
  2019年   10篇
  2018年   15篇
  2017年   12篇
  2016年   7篇
  2015年   23篇
  2014年   16篇
  2013年   24篇
  2012年   34篇
  2011年   29篇
  2010年   23篇
  2009年   28篇
  2008年   19篇
  2007年   17篇
  2006年   14篇
  2005年   12篇
  2004年   16篇
  2003年   10篇
  2002年   13篇
  2001年   8篇
  2000年   15篇
  1999年   13篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1964年   1篇
排序方式: 共有450条查询结果,搜索用时 250 毫秒
51.
Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.  相似文献   
52.
The thick ascending limb of Henle's loop (TAL) is capable of metabolizing arachidonic acid (AA) by cytochrome P450 (CYP450) and cyclooxygenase (COX) pathways and has been identified as a nephron segment that contributes to salt-sensitive hypertension. Previous studies demonstrated a prominent role for CYP450-dependent metabolism of AA to products that inhibited ion transport pathways in the TAL. However, COX-2 is constitutively expressed along all segments of the TAL and is increased in response to diverse stimuli. The ability of Tamm-Horsfall glycoprotein, a selective marker of cortical TAL (cTAL) and medullary (mTAL), to bind TNF and localize it to this nephron segment prompted studies to determine the capacity of mTAL cells to produce TNF and determine its effects on mTAL function. The colocalization of calcium-sensing receptor (CaR) and COX-2 in the TAL supports the notion that activation of CaR induces TNF-dependent COX-2 expression and PGE? synthesis in mTAL cells. Additional studies showed that TNF produced by mTAL cells inhibits ??Rb uptake, an in vitro correlate of natriuresis, in an autocrine- and COX-2-dependent manner. The molecular mechanism for these effects likely includes inhibition of Na?-K?-2Cl? cotransporter (NKCC2) expression and trafficking.  相似文献   
53.
Mitochondrial uncoupling protein 2 (UCP2) is induced by cellular stress and is involved in regulation of fuel utilization, mitochondrial bioenergetics, cell proliferation, neuroprotection and synaptogenesis in the adult brain. Here we show that natural birth in mice triggers UCP2 expression in hippocampal neurons. Chemical inhibition or genetic ablation of UCP2 lead to diminished neuronal number and size, dendritic growth and synaptogenezis in vitro and impaired complex behaviors in the adult. These data reveal a critical role for Ucp2 expression in the development of hippocampal neurons and circuits and hippocampus-related adult behaviors.  相似文献   
54.
55.
Stromelysin-1 is a member of a tissue metalloproteinase family whose members are all capable of degrading extracellular matrix components. A truncated form of human fibroblast prostromelysin 1 lacking the C-terminal, hemopexin-like domain has been expressed in Escherichia coli and purified to homogeneity. Treatment of this short form of prostromelysin with (aminophenyl)mercuric acetate resulted in activation and loss of the propeptide in a manner identical with the wild-type, full-length protein. Kinetic comparisons using Nle11-substance P as a substrate showed that the wild-type stromelysin and the truncated form of the enzyme had similar kcat and Km values. Likewise, both enzymes displayed similar Ki values for a hydroxamate-containing peptide inhibitor. Taken together, these results indicate that the C-terminal portion of stromelysin is not required for proper folding of the catalytic domain, maintenance of the enzyme in a latent form, activation with an organomercurial, cleavage of a peptide substrate, or interaction with an inhibitor. Moreover, the active short form of stromelysin displayed a reduction in the C-terminal heterogeneity, a characteristic degradation of the full-length stromelysin, and thereby provides a more suitable protein for future structural studies.  相似文献   
56.
57.
Protein acetylation is a rapid mechanism for control of protein function. Acetyl‐CoA synthetase (AMP‐forming, Acs) is the paradigm for the control of metabolic enzymes by lysine acetylation. In many bacteria, type I or II protein acetyltransferases acetylate Acs, however, in actinomycetes type III protein acetyltransferases control the activity of Acs. We measured changes in the activity of the Streptomyces lividans Acs (SlAcs) enzyme upon acetylation by PatB using in vitro and in vivo analyses. In addition to the acetylation of residue K610, residue S608 within the acetylation motif of SlAcs was also acetylated (PKTRSGK610). S608 acetylation rendered SlAcs inactive and non‐acetylatable by PatB. It is unclear whether acetylation of S608 is enzymatic, but it was clear that this modification occurred in vivo in Streptomyces. In S. lividans, an NAD+‐dependent sirtuin deacetylase from Streptomyces, SrtA (a homologue of the human SIRT4 protein) was needed to maintain SlAcs function in vivo. We have characterized a sirtuin‐dependent reversible lysine acetylation system in Streptomyces lividans that targets and controls the Acs enzyme of this bacterium. These studies raise questions about acetyltransferase specificity, and describe the first Acs enzyme in any organism whose activity is modulated by O‐Ser and N?Lys acetylation.  相似文献   
58.
The tick fauna of Brazil is currently composed by 72 species. The state of Amazonas is the largest of Brazil, with an area of ≈ 19% of the Brazilian land. Besides its vast geographic area, only 19 tick species have been reported for Amazonas. Herein, lots containing ticks from the state of Amazonas were examined in three major tick collections from Brazil. A total of 5933 tick specimens were examined and recorded, comprising 2693 males, 1247 females, 1509 nymphs, and 484 larvae. These ticks were identified into the following 22 species: Amblyomma cajennense sensu lato, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma dissimile, Amblyomma dubitatum, Amblyomma geayi, Amblyomma goeldii, Amblyomma humerale, Amblyomma latepunctatun, Amblyomma longirostre, Amblyomma naponense, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma rotundatum, Amblyomma scalpturatum, Amblyomma varium, Dermacentor nitens, Haemaphysalis juxtakochi, Ixodes cf. Ixodes fuscipes, Ixodes luciae, Rhipicephalus microplus, Rhipicephalus sanguineus sensu lato. Ticks were collected from 17 (27.4%) out of the 62 municipalities that currently compose the state of Amazonas. The following four species are reported for the first time in the state of Amazonas: A. coelebs, A. dubitatum, H. juxtakochi, and Ixodes cf. I. fuscipes. The only tick species previously reported for Amazonas and not found in the present study is Amblyomma parvum. This study provides a great expansion of geographical and host records of ticks for the state of Amazonas, which is now considered to have a tick fauna composed by 23 species. It is noteworthy that we report 1391 Amblyomma nymphs that were identified to 13 different species.  相似文献   
59.
The multispanning membrane protein vacuole membrane protein 1 (VMP1) marks and regulates endoplasmic reticulum (ER)‐domains associated with diverse ER‐organelle membrane contact sites. A proportion of these domains associate with endosomes during their maturation and remodeling. We found that these VMP1 domains are enriched in choline/ethanolamine phosphotransferase and phosphatidylinositol synthase (PIS1), 2 ER enzymes required for the synthesis of various phospholipids. Interestingly, the lack of VMP1 impairs the formation of PIS1‐enriched ER domains, suggesting a role in the distribution of phosphoinositides. In fact, depletion of VMP1 alters the distribution of PtdIns4P and proteins involved in the trafficking of PtdIns4P. Consistently, in these conditions, defects were observed in endosome trafficking and maturation as well as in Golgi morphology. We propose that VMP1 regulates the formation of ER domains enriched in lipid synthesizing enzymes. These domains might be necessary for efficient distribution of PtdIns4P and perhaps other lipid species. These findings, along with previous reports that involved VMP1 in regulating PtdIns3P during autophagy, expand the role of VMP1 in lipid trafficking and explain the pleiotropic effects observed in VMP1‐deficient mammalian cells and other model systems.   相似文献   
60.
A dedicated UNC45, Cro1, She4 (UCS) domain-containing protein assists in the Hsp90-mediated folding of the myosin head. Only weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and striated muscle UNC45s; UNC45-GC and UNC45-SM, respectively). In vertebrates, UNC45-GC facilitates cytoskeletal functions, whereas the 55% identical UNC45-SM assists assembly of the contractile apparatus of cardiac and skeletal muscles. A Saccharomyces cerevisiae she4Δ mutant, totally lacking any UCS protein, was engineered to express as its sole Hsp90 either the Hsp90α or the Hsp90β isoforms of human cytosolic Hsp90. A transient induction of the human UNC45-GC, but not UNC45-SM, could rescue the defective endocytosis in these she4Δ cells at 39 °C, irrespective of whether they possessed Hsp90α or Hsp90β. UNC45-GC-mediated rescue of the localisation of a Myo5-green fluorescent protein (GFP) fusion to cortical patches at 39 °C was more efficient in the yeast containing Hsp90α, though this may relate to more efficient functioning of Hsp90α as compared to Hsp90β in these strains. Furthermore, inducible expression of UNC45-GC, but not UNC45-SM, could partially rescue survival at a more extreme temperature (45 °C) that normally causes she4Δ mutant yeast cells to lyse. The results indicate that UCS protein function has been most conserved—yeast to man—in the UNC45-GC, not UNC45-SM. This may reflect UNC45-GC being the vertebrate UCS protein that assists formation of the actomyosin complexes needed for cytokinesis, cell morphological change, and organelle trafficking—events also facilitated by the myosins in yeast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号