首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5891篇
  免费   550篇
  国内免费   3篇
  2021年   70篇
  2020年   39篇
  2019年   48篇
  2018年   51篇
  2017年   60篇
  2016年   122篇
  2015年   171篇
  2014年   215篇
  2013年   289篇
  2012年   305篇
  2011年   313篇
  2010年   205篇
  2009年   176篇
  2008年   260篇
  2007年   283篇
  2006年   245篇
  2005年   233篇
  2004年   234篇
  2003年   204篇
  2002年   224篇
  2001年   138篇
  2000年   144篇
  1999年   120篇
  1998年   87篇
  1997年   77篇
  1996年   67篇
  1995年   57篇
  1994年   56篇
  1993年   46篇
  1992年   83篇
  1991年   69篇
  1990年   63篇
  1989年   79篇
  1988年   79篇
  1987年   63篇
  1986年   56篇
  1985年   81篇
  1984年   58篇
  1983年   37篇
  1982年   50篇
  1981年   52篇
  1980年   38篇
  1979年   55篇
  1978年   44篇
  1977年   64篇
  1976年   51篇
  1974年   45篇
  1973年   52篇
  1972年   42篇
  1970年   40篇
排序方式: 共有6444条查询结果,搜索用时 15 毫秒
21.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   
22.
Transposon mutants of Bradyrhizobium japonicum 110 ARS were produced and screened for changes in attachment ability. Mutant CFK4 produced twice as many piliated cells, attached in 2.5-fold-higher numbers to soybean root segments, and colonized roots in about 2-fold-higher numbers than did the parental strain, 110 ARS. Mutants CFK35 and CFK38 were reduced in their attachment about 2-fold and 3.5-fold, respectively. This corresponded to reductions in piliated cells in their populations, reduced reaction with anti-pilus antiserum, and reduced hydrophobic attachment. Mutants CFK4 and CFK38 nodulated soybeans at about the same level as the parent strain, but CFK35 induced only pseudonodules. Two-dimensional gel analyses of the proteins from the mutants showed relatively few changes in proteins.  相似文献   
23.
J McLick  P I Bauer  A Hakam  E Kun 《Biochemistry》1987,26(8):2226-2231
The poly(adenosine diphosphoribose) polymerase activity of isolated liver nuclei was inhibited by 4-carbamoylbenzenediazonium chloride, referred to as 4-diazoniobenzamide, an effect that was dependent on the time of incubation and the concentration of the diazonium compound, with inhibition following first-order kinetics. The inhibition was not reversed by reisolation of nuclei and centrifugal washing, whereas the inhibition by benzamide or 4-aminobenzamide was completely reversible under these conditions. Simultaneous incubation of 4-diazoniobenzamide with benzamide prevented enzyme inhibition. The 4-diazoniobenzoic acid analogue was not inhibitory. The mechanism of action of 4-diazoniobenzamide was traced to a specific covalent binding to dGMP of DNA to form N2-[(4-carbamoylphenyl)azo]-2'-deoxyguanosine 5'-monophosphate. Coenzymic DNA, by tight association with the polymerase protein, fixes the -C(O)NH2 moiety of the adduct at the nicotinamide-binding site of the enzyme.  相似文献   
24.
Tape stripping of human skin elicits a proliferative response of a synchronously-dividing group of cells. The progress of this cohort of cells has been monitored using two windows in the cell cycle, one located in mid-S phase and the other centred around G2 + M. The cellular DNA is measured with flow cytometry, the windows are defined by two ranges in the DNA histogram. The cohort can be described as the recruitment of cells from a pre-existing G0 compartment which consists of 76% of all proliferative cells. The duration of the S phase is calculated to be 10.2 hr and G2 + M phase 5.1 hr. The cell cycle time of 39 hr for normal human keratinocytes derived from these figures is in line with recent values obtained by different techniques.  相似文献   
25.
The interaction of benzamide with the isolated components of calf thymus poly(ADP-ribose) polymerase and with liver nuclei has been investigated. A benzamide-agarose affinity gel matrix was prepared by coupling o-aminobenzoic acid with Affi-Gel 10, followed by amidation. The benzamide-agarose matrix bound the DNA that is coenzymic with poly(ADP-ribose) polymerase; the matrix, however, did not bind the purified poly(ADP-ribose) polymerase protein. A highly radioactive derivative of benzamide, the 125I-labelled adduct of o-aminobenzamide and the Bolton-Hunter reagent, was prepared and its binding to liver nuclear DNA, calf thymus DNA and specific coenzymic DNA of poly(ADP-ribose) polymerase was compared. The binding of labelled benzamide to coenzymic DNA was several-fold higher than its binding to unfractionated calf thymus DNA. A DNA-related enzyme inhibitory site of benzamide was demonstrated in a reconstructed poly(ADP-ribose) polymerase system, made up from purified enzyme protein and varying concentrations of a synthetic octadeoxynucleotide that serves as coenzyme. As a model for benzamide binding to DNA, a crystalline complex of 9-ethyladenine and benzamide was prepared and its X-ray crystallographic structure was determined; this indicated a specific hydrogen bond between an amide hydrogen atom and N-3 of adenine. The benzamide also formed a hydrogen bond to another benzamide molecule. The aromatic ring of benzamide does not intercalate between ethyladenine molecules, but lies nearly perpendicular to the planes of stacking ethyladenine molecules in a manner reminiscent of the binding of ethidium bromide to polynucleotides. Thus we have identified DNA as a site of binding of benzamide; this binding is critically dependent on the nature of the DNA and is high for coenzymic DNA that is isolated with the purified enzyme as a tightly associated species. A possible model for such binding has been suggested from the structural analysis of a benzamide-ethyladenine complex.  相似文献   
26.
Summary We have followed the segregation of the probes pJ3.11, 7C22, pB79a, and MET through cystic fibrosis families in the German Democratic Republic with two affected sibs. Two families with a crossover between MET and the CF phenotype were detected. In one of these families recombination was also observed between the DNA probe 7C22 and CF, and between the markers XV-2c and CF, which suggests that XV-2c, MET and 7C22 are all on the same side of CF. The other MET recombinant family is informative with XV-2c and does not recombine, which excludes the genetic order XC-2c-MET-CF if multiple recombinant events are disregarded. These two families together demonstrate that recombinations may occur in a very small genetic interval, which has important implications for prenatal diagnosis based on data from linked markers.  相似文献   
27.
Near a hen house (50–600 m), vitality ofPinus sylvestris, N-, P-, K-, Ca-, Mg-contents of the needles, N-, Mg-, K-, Ca- and Al-contents in soil extracts and NH3/NH 4 + -contents of the air were determined. Damage symptoms occurred when N-immissions hit the canopy directly. In contrast no visible decline of the above ground plant could be observed if N was mainly deposited on the soil.  相似文献   
28.
Summary Grown anaerobically on d-xylose, Klebsiella planticola ATCC 33531 produced acetate, formate, lactate, CO2 and ethanol as major end-products. A Mu-insertion mutant which lacked pyruvate-formate-lyase showed among its fermentation products more than 70% d-lactate with residual acetate, 2,3-butanediol, and traces of ethanol, formate, and CO2. After the introduction of a plasmid carrying the gene for the enzyme pyruvate decarboxylase from Zymomonas mobilis, this Klebsiella mutant became an efficient ethanol producer. The recombinant strain produced 387 mM ethanol from 275 mM xylose in 80 h, about 83% of the theoretical maximal yield. Furthermore, this mutant consumed more than double the amount of xylose (41 g/l) compared to the wild-type, due to reduced production of inhibiting acids during growth.Dedicated to Professor Dr. Zähner on the occasion of his 60th birthday  相似文献   
29.
Summary The influence of different primary aliphatic alcohols on the activities of two key enzymes in hopanoid biosynthesis of Zymomonas mobilis was investigated. By use of 14C- and 3H-labelled substrates the enzymes 3-hydroxy-3-methylglutaryl-CoA-reductase and squalene-hopenecyclase were detected with activities of 1.6 pmol x (min x mg protein)-1 and 2.3 pmol x- (min x mg protein)-1, respectively. Cells grown in the presence of 6% (v/v) ethanol did not show higher activities of these enzymes than cells grown in the presence of 1% (v/v) ethanol. Furthermore, 3-hydroxy-3-methylglutaryl-CoA-reductase was not activated by ethanol. However, ethanol activated the squalene-hopene-cyclase when added to the enzyme test system. Besides ethanol, propanol also had a positive effect on the squalene-hopene-cyclase: the enzyme's activity increased 1.7-fold in the presence of either alcohol at a concentration of 6% (v/v). This corresponded with a similar increase of hopanoid content of whole cells when grown in the presence of 6% (v/v) added ethanol or propanol. These results indicated that the squalene-hopene-cyclase has a regulatory function in the alcohol dependent hopanoid biosynthesis of Z. mobilis.Abbreviation HMG-CoA-reductase 3-hydroxy-3-methylglutaryl-coenzyme A-reductase  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号