首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8642篇
  免费   955篇
  国内免费   3篇
  9600篇
  2021年   109篇
  2020年   61篇
  2019年   79篇
  2018年   101篇
  2017年   94篇
  2016年   162篇
  2015年   235篇
  2014年   300篇
  2013年   381篇
  2012年   496篇
  2011年   427篇
  2010年   287篇
  2009年   285篇
  2008年   355篇
  2007年   367篇
  2006年   363篇
  2005年   339篇
  2004年   339篇
  2003年   302篇
  2002年   291篇
  2001年   230篇
  2000年   218篇
  1999年   214篇
  1998年   112篇
  1997年   103篇
  1996年   96篇
  1995年   112篇
  1994年   118篇
  1993年   95篇
  1992年   189篇
  1991年   148篇
  1990年   140篇
  1989年   144篇
  1988年   126篇
  1987年   129篇
  1986年   147篇
  1985年   124篇
  1984年   111篇
  1983年   84篇
  1982年   97篇
  1981年   86篇
  1980年   59篇
  1979年   107篇
  1978年   98篇
  1977年   69篇
  1976年   78篇
  1975年   79篇
  1974年   90篇
  1973年   67篇
  1970年   63篇
排序方式: 共有9600条查询结果,搜索用时 15 毫秒
991.
The intraspecific relationships among a collection of Enterococcus faecium isolates comprising probiotic cultures and human clinical isolates were investigated through the combined use of two high-resolution DNA-fingerprinting techniques. In addition, the incidences of antimicrobial resistance and virulence traits were investigated. A total of 128 E. faecium isolates from human clinical or nonclinical sources or used as probiotic cultures were subjected to fluorescent amplified fragment length polymorphism (FAFLP) fingerprinting and pulsed-field gel electrophoresis (PFGE) analysis of SmaI macrorestriction patterns. Susceptibilities to 16 antimicrobial agents were tested using broth microdilution, and the presence of the corresponding resistance genes was investigated using PCR. Multiplex PCR was used to detect the presence of the enterococcal virulence genes asa1, gelE, cylA, esp, and hyl. The results of the study showed that two intraspecific genomic groups (I and II) were obtained in FAFLP analysis. PFGE analysis demonstrated high variability within these two groups but also indicated that some probiotic cultures were indistinguishable and that a number of clinical isolates may be reisolations of commercial probiotic cultures. Compared to group II, which contained the majority of the probiotic isolates and fewer human clinical isolates, higher phenotypic and genotypic resistance frequencies were observed in group I. Two probiotic isolates were phenotypically resistant to erythromycin, one of which contained an erm(B) gene that was not transferable to enterococcal recipients. None of the probiotic E. faecium isolates demonstrated the presence of the tested virulence genes. The previously reported observation that E. faecium consists of two intraspecific genomic groups was further substantiated by FAFLP fingerprinting of 128 isolates. In combination with antimicrobial resistance and virulence testing, this grouping might represent an additional criterion in assessing the safety of new potential probiotic E. faecium isolates.  相似文献   
992.
Cyclic-di-guanylate (c-di-GMP) has emerged as a general and important signaling molecule uniquely present in bacteria: herein we provide a simple solid-phase synthesis of c-di-GMP using an automated DNA synthesizer for the majority of the synthesis.  相似文献   
993.
Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance. To address this, we screened for inhibitors of dihydrolipoamide acyltransferase (DlaT), an enzyme required by Mtb to cause tuberculosis in guinea pigs and used by the bacterium to resist nitric oxide-derived reactive nitrogen intermediates, a stress encountered in the host. Chemical screening for inhibitors of Mtb DlaT identified select rhodanines as compounds that almost exclusively kill nonreplicating mycobacteria in synergy with products of host immunity, such as nitric oxide and hypoxia, and are effective on bacteria within macrophages, a cellular reservoir for latent Mtb. Compounds that kill nonreplicating pathogens in cooperation with host immunity could complement the conventional chemotherapy of infectious disease.  相似文献   
994.
995.
Mutations in the MID1 protein have been found in patients with Opitz BBB/G syndrome (OS), which is characterised by multiple malformations of the ventral midline. MID1 is a microtubule-associated protein that stabilizes microtubules and, in association with the regulatory subunit of protein phosphatase 2A (PP2A), alpha4, provides ubiquitin ligase activity for the ubiquitin-specific modification of PP2A. Using Fluorescence Recovery After Photobleaching (FRAP) technology, we show here that MID1 is actively and bi-directionally transported along the microtubules, and that this movement is directly linked to its MAP kinase and PP2A-mediated phosphorylation status. Intact transport depends on both kinesins and dyneins and is inhibited upon colcemide treatments. MID1 proteins carrying missense mutations in the alpha4 binding domain still bind the microtubules but cannot be actively transported. Likewise, knock-down of the alpha4 protein, inhibition of PP2A activity by okadaic acid and fostriecin or the simulation of permanent phosphorylation at Ser96 in MID1 stop the migration of MID1-GFP, while preserving its microtubule-association. In summary, our data uncover an unexpected and novel function for PP2A, its regulatory subunit alpha4 and PP2A/alpha4/mTOR signaling in the active transport of the MID1 ubiquitin ligase complex along the cytoskeleton. Furthermore, a failure in the microtubule directed transport of this protein complex would be an attractive mechanism underlying the pathogenesis of OS in patients with B-box1 mutations.  相似文献   
996.

Background

Female sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies.

Methodology/Principal Findings

Using a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP) in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z)-9-tetradecenol (Z9-14:OH), hexadecanal (16:Ald ) and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol), and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP.

Conclusions/Significance

This study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant to future research. Such a comparison will in turn contribute to understanding the evolution of sex pheromone production and reception in butterflies.  相似文献   
997.
A variety of embryonic and adult stem cell lines require an intial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers. Complete and reproducible separation of feeder and embryonic stem cells was accomplished by adaptation of an automated cell selection system that resulted in the aspiration of distinct cell colonies or fraction of colonies according to predefined physical parameters. Analyzing neuronal differentiation we demonstrated feeder-freed stem cells to exhibit differentiation potentials comparable to embryonic stem cells differentiated under standard conditions. However, embryoid body growth as well as differentiation of stem cells into cardiomyocytes was significantly enhanced in feeder-freed cells, indicating a feeder cell dependent modulation of lineage differentiation during early embryoid body development. These findings underline the necessity to separate stem and feeder cells before the initiation of in vitro differentiation. The complete separation of stem and feeder cells by this new technology results in pure stem cell populations for translational approaches. Furthermore, a more detailed analysis of the effect of feeder cells on stem cell differentiation is now possible, that might facilitate the identification and development of new optimized human or genetically modified feeder cell lines.  相似文献   
998.
The biosynthesis of cysteine is a crucial metabolic pathway supplying a building block for de novo protein synthesis but also a reduced thiol as a component of the oxidative defense mechanisms that appear particularly vital in the dormant state of Mycobacterium tuberculosis. We here show that the cysteine synthase CysM is, in contrast to previous annotations, an O-phosphoserine-specific cysteine synthase. CysM belongs to the fold type II pyridoxal 5'-phosphate-dependent enzymes, as revealed by the crystal structure determined at 2.1-angstroms resolution. A model of O-phosphoserine bound to the enzyme suggests a hydrogen bonding interaction of the side chain of Arg220 with the phosphate group as a key feature in substrate selectivity. Replacement of this residue results in a significant loss of specificity for O-phosphoserine. Notably, reactions with sulfur donors are not affected by the amino acid replacement. The specificity of CysM toward O-phosphoserine together with the previously established novel mode of sulfur delivery via thiocarboxylated CysO (Burns, K. E., Baumgart, S., Dorrestein, P. C., Zhai, H., McLafferty, F. W., and Begley, T. P. (2005) J. Am. Chem. Soc. 127, 11602-11603) provide strong evidence for an O-phosphoserine-based cysteine biosynthesis pathway in M. tuberculosis that is independent of both O-acetylserine and the sulfate reduction pathway. The existence of an alternative biosynthetic pathway to cysteine in this pathogen has implications for the design strategy aimed at inhibition of this metabolic route.  相似文献   
999.
Although investigation of the toxicological and physiological actions of alpha/beta-unsaturated 4-hydroxyalkenals has made great progress over the last 2 decades, understanding of the chemical mechanism of formation of 4-hydroxynonenal and related aldehydes has advanced much less. The aim of this review is to discuss mechanistic evidence for these non-enzymatic routes, especially of the underappreciated intermolecular pathways that involve dimerized and oligomerized fatty acid derivatives as key intermediates. These cross-molecular reactions of fatty acid peroxyls have also important implications for understanding of the basic initiation and propagation steps during lipid peroxidation and the nature of the products that arise.  相似文献   
1000.
Dehydroepiandrosterone-fatty acyl esters (DHEA-FAE) belong to a unique family of naturally occurring hydrophobic steroid hormone derivatives that are transported in circulating lipoproteins and may act as a source of dehydroepiendrosterone (DHEA) and other biologically active steroid hormones in cells. Here, we studied the metabolic fate of low-density lipoprotein-associated [(3)H]DHEA-FAE ([(3)H]DHEA-FAE-LDL) and the possible role of lysosomal acid lipase (LAL) in the hydrolysis of DHEA-FAE in cultured human cells. When HeLa cells were incubated with [(3)H]DHEA-FAE-LDL, the accumulation of label in the cellular fraction increased with incubation time and could be inhibited by excess unlabeled LDL, suggesting LDL receptor or LDL receptor-related receptor-dependent uptake. During 48 h of chase, decreasing amounts of [(3)H]DHEA-FAE were found in the cellular fraction, while in the medium increasing amounts of unesterified [(3)H]DHEA and its two metabolites, [(3)H]-5alpha-androstanedione (5alpha-adione) and [(3)H]androstenedione (4-adione), appeared. As LDL-cholesteryl ester hydrolysis is dependent on LAL activity, we depleted LAL from HeLa cells using small interfering RNAs and compared the hydrolysis of [(3)H]DHEA-FAE-LDL and [(3)H]cholesteryl-FAE-LDL. The results demonstrated a more modest but significant reducing effect on the hydrolysis of [(3)H]DHEA-FAE compared with [(3)H]cholesteryl-FAE. Moreover, experiments in LAL-deficient human fibroblasts (Wolman disease patient cells) showed that [(3)H]DHEA-FAE hydrolysis was not completely dependent on LAL activity. In summary, LDL-transported [(3)H]DHEA-FAE entered cells via LDL receptor or LDL receptor-related receptor-mediated uptake, followed by intracellular hydrolysis and further metabolism into 5alpha-adione and 4-adione that were excreted from cells. Although LAL contributed to the deesterification of DHEA-FAE, it was not solely responsible for the hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号