首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   25篇
  2021年   8篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   11篇
  2014年   13篇
  2013年   38篇
  2012年   29篇
  2011年   21篇
  2010年   15篇
  2009年   17篇
  2008年   32篇
  2007年   30篇
  2006年   25篇
  2005年   22篇
  2004年   26篇
  2003年   27篇
  2002年   21篇
  2001年   9篇
  2000年   10篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   5篇
  1995年   11篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   10篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
  1911年   3篇
排序方式: 共有494条查询结果,搜索用时 156 毫秒
41.
Glycogen synthase kinase 3 (GSK-3) was originally identified as a regulator of glycogen synthesis in mammals. Like starch in plants, glycogen is a polymer of glucose, and serves as an energy and carbon store. Starch is the main carbohydrate store in plants. Regulation of starch metabolism, in particular in response to environmental cues, is of primary importance for carbon and energy flow in plants but is still obscure. Here, we provide evidence that MsK4, a novel Medicago sativa GSK-3-like kinase, connects stress signalling with carbon metabolism. MsK4 was found to be a plastid-localized protein kinase that is associated with starch granules. High-salt stress rapidly induced the in vivo kinase activity of MsK4. Metabolic profiling of MsK4 over-expressor lines revealed changes in sugar metabolism, including increased amounts of maltose, the main degradation product of starch in leaves. Plants over-expressing MsK4 showed improved tolerance to salt stress. Moreover, under high-salinity conditions, MsK4-over-expressing plants accumulated significantly more starch and showed modified carbohydrate content compared with wild-type plants. Overall, these data indicate that MsK4 is an important regulator that adjusts carbohydrate metabolism to environmental stress.  相似文献   
42.
Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H(2)O(2), but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.  相似文献   
43.
Activation of BNP and IL-6 are hallmarks of left ventricular (LV) dysfunction and congestive heart failure (CHF). To assess the relative activation of BNP and IL-6 in clinical and experimental heart failure, we performed a human study in which plasma N-terminal proBNP (NT-proBNP) and IL-6 were measured in a large group of patients in the chronic phase after myocardial infarction (MI) and an animal study in which LV gene expression of BNP and IL-6 was assessed in rapid ventricular pacing-induced heart failure. In the human study, NT-proBNP and IL-6 were measured by non-extracted, enzyme-linked immunoassay in 845 subjects (n=468 outpatients after MI, MONICA MI register Augsburg; and 377 siblings without MI, control). NT-proBNP (295+/-23pg/mL vs. CTRL 84+/-8, P<0.05) and IL-6 (2.7+/-0.1pg/mL vs. CTRL 2.1+/-0.1, P<0.05) were both elevated in subjects with MI. These increases were particularly pronounced in the presence of concomitant CHF (both P<0.01 vs. CTRL) and LV dysfunction (EF<45%, both P<0.05 vs. CTRL). However, NT-proBNP was significantly correlated with several cardiac structural and functional parameters (EF, LVMI, history of MI, CHF symptoms; all P<0.05) upon regression analysis whereas IL-6 was only correlated with history of MI (P<0.001). Accordingly, MI subjects with symptomatic LV dysfunction were detected by NT-proBNP with a greater sensitivity, specificity, and ROC-area (85%, 88%, and 0.87, respectively) as compared to IL-6 (69%, 53%, and 0.67, respectively). In the animal study, IL-6 and BNP expression were both significantly elevated in CHF (both P<0.05) but with a much greater absolute activation of BNP. In addition, BNP mRNA expression displayed a stronger inverse correlation with LV function (r=-0.74; P<0.001) than IL-6 (r=-0.53; P=0.001) and was a markedly more sensitive and specific molecular marker of LV dysfunction (sensitivity 91%, specificity 100%, ROC-area 0.94) than IL-6 (sensitivity 74%, specificity 83%, ROC-area 0.87). Our animal study provides evidence that IL-6 expression is activated in heart failure but to a significantly lesser degree than that of BNP. Both the stronger expression of BNP and the better correlation with LV function provide the molecular basis for a diagnostic superiority of NT-proBNP in clinical LV dysfunction and heart failure.  相似文献   
44.
45.
46.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   
47.
48.
Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号