首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2020年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
Ketogenesis from endogenous fatty acids or from exogenous octanoate has been studied in isolated hepatocytes from fetal. 24-h-old newborn and adult rabbit. In fed adult rabbits, endogenous ketogenesis is low and increases sixfold in the presence of 2 mM octanoate. At birth, endogenous ketogenesis is low and markedly increases 24 h after birth but, in both cases, the addition of 2 mM octanoate does not increase the rates of ketone body production. Hepatocytes isolated from 24-h-old newborn or fed adult rabbits and incubated with [1-14C]octanoate show a preferential channeling of fatty acid into oxidation (84-92% of octanoate metabolized). In contrast, esterification represents 43% of the amount of octanoate metabolized at birth. Chromatographic analysis of labelled triacylglycerols shows that 76 +/- 2% of labelled fatty acids are identified as octanoate and all of the radioactivity in the octanoate peak is due to the carboxyl carbon. In hepatocytes from term fetus, the low capacity for octanoate oxidation is associated with a high capacity for esterification, whatever the octanoate concentration in the medium. Octanoate activated to octanoyl-CoA in the cytosol of fetal hepatocyte is not oxidized in the mitochondria since carnitine acyltransferase I has a low activity at birth in the rabbit. This suggests that only a part of the octanoate pool is activated outside the mitochondria. Factors involved in the direct esterification of octanoate into triacylglycerols in term fetal hepatocytes are discussed.  相似文献   
12.
Previous work from this laboratory led to the isolation by gel filtration and anionic exchange HPLC of a rat brain fraction named II-E, which highly inhibits synaptosomal membrane Na+, K+-ATPase activity. In this study we evaluated the kinetics of such inhibition and found that inhibitory potency was independent of Na+(1.56–200 mM), K+(1.25–40 mM), or ATP (1–8 mM) concentration. Hanes-Woolf plots indicated that II-E decreases Vmax but does not alter KMvalue, and suggested uncompetitive inhibition for Na+, K+or ATP. However, II-E became a stimulator at 0.5 mM ATP concentration. It is postulated that this brain factor may modulate ionic transport at synapses, thus participating in central neurotransmission.  相似文献   
13.
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号