首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4858篇
  免费   431篇
  国内免费   6篇
  5295篇
  2021年   41篇
  2018年   34篇
  2017年   35篇
  2016年   72篇
  2015年   121篇
  2014年   128篇
  2013年   186篇
  2012年   229篇
  2011年   222篇
  2010年   138篇
  2009年   159篇
  2008年   206篇
  2007年   211篇
  2006年   240篇
  2005年   204篇
  2004年   177篇
  2003年   213篇
  2002年   212篇
  2001年   56篇
  2000年   67篇
  1999年   76篇
  1998年   69篇
  1997年   54篇
  1996年   55篇
  1995年   46篇
  1994年   51篇
  1993年   45篇
  1992年   42篇
  1991年   47篇
  1990年   53篇
  1989年   43篇
  1987年   38篇
  1986年   36篇
  1985年   43篇
  1984年   68篇
  1983年   62篇
  1982年   55篇
  1981年   62篇
  1980年   53篇
  1979年   55篇
  1978年   64篇
  1977年   47篇
  1976年   50篇
  1974年   37篇
  1973年   55篇
  1972年   39篇
  1971年   34篇
  1970年   37篇
  1969年   42篇
  1967年   35篇
排序方式: 共有5295条查询结果,搜索用时 15 毫秒
991.
992.
Improving Rubisco catalysis is considered a promising way to enhance C3-photosynthesis and photosynthetic water use efficiency (WUE) provided the introduced changes have little or no impact on other processes affecting photosynthesis such as leaf photochemistry or leaf CO2 diffusion conductances. However, the extent to which the factors affecting photosynthetic capacity are co-regulated is unclear. The aim of the present study was to characterize the photochemistry and CO2 transport processes in the leaves of three transplantomic tobacco genotypes expressing hybrid Rubisco isoforms comprising different Flaveria L-subunits that show variations in catalysis and differing trade-offs between the amount of Rubisco and its activation state. Stomatal conductance (g s) in each transplantomic tobacco line matched wild-type, while their photochemistry showed co-regulation with the variations in Rubisco catalysis. A tight co-regulation was observed between Rubisco activity and mesophyll conductance (g m) that was independent of g s thus producing plants with varying g m/g s ratios. Since the g m/g s ratio has been shown to positively correlate with intrinsic WUE, the present results suggest that altering photosynthesis by modifying Rubisco catalysis may also be useful for targeting WUE.  相似文献   
993.
994.
995.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.  相似文献   
996.
997.
To identify novel factors that lead a fly imaginal disc to adopt its developmental fate, we carried out a modular dominant misexpression screen in imaginal discs. We have identified two factors that appear to change the fate of the respective body structure and appear to lead to the transformation of a body part. In one mutant line, notum tissue, normally derived from wing imaginal tissue, formed close to the site of the sternopleural bristles, which are leg disc derivatives. In the other line, the arista is transformed into a tubular structure, resembling an abnormal leg. We found that ectopic expression of abrupt was responsible for this potential transformation of the arista.  相似文献   
998.
In Alzheimer disease amyloid-β (Aβ) peptides derived from the amyloid precursor protein (APP) accumulate in the brain. Cleavage of APP by the β-secretase BACE1 is the rate-limiting step in the production of Aβ. We have reported previously that the cellular prion protein (PrP(C)) inhibited the action of BACE1 toward human wild type APP (APP(WT)) in cellular models and that the levels of endogenous murine Aβ were significantly increased in PrP(C)-null mouse brain. Here we investigated the molecular and cellular mechanisms underlying this observation. PrP(C) interacted directly with the prodomain of the immature Golgi-localized form of BACE1. This interaction decreased BACE1 at the cell surface and in endosomes where it preferentially cleaves APP(WT) but increased it in the Golgi where it preferentially cleaves APP with the Swedish mutation (APP(Swe)). In transgenic mice expressing human APP with the Swedish and Indiana familial mutations (APP(Swe,Ind)), PrP(C) deletion had no influence on APP proteolytic processing, Aβ plaque deposition, or levels of soluble Aβ or Aβ oligomers. In cells, although PrP(C) inhibited the action of BACE1 on APP(WT), it did not inhibit BACE1 activity toward APP(Swe). The differential subcellular location of the BACE1 cleavage of APP(Swe) relative to APP(WT) provides an explanation for the failure of PrP(C) deletion to affect Aβ accumulation in APP(Swe,Ind) mice. Thus, although PrP(C) exerts no control on cleavage of APP(Swe) by BACE1, it has a profound influence on the cleavage of APP(WT), suggesting that PrP(C) may be a key protective player against sporadic Alzheimer disease.  相似文献   
999.
Biodegradation of naphthalene by enriched marine denitrifying bacteria   总被引:3,自引:0,他引:3  
Numerous studies have been investigated on the PAHs biodegradation in aerobic and anaerobic environments; however, the biodegradation of PAHs under anoxic conditions, especially denitrifying conditions, has drawn less attention. In this study, four series of batch experiments were conducted to investigate the effect of temperature, pH, naphthalene concentration and nitrate concentration on the naphthalene degradation under denitrification condition. Our results showed that the degradation of naphthalene was most favorable at pH 7 and 25 °C. Results also indicated that 30 mg/l naphthalene inhibited the biodegradation and the removal efficiency was only 20.2%. Significant degradation (91.7% and 96.3%) of naphthalene occurred when nitrate concentrations were 1.0 and 5.0 mM. Moreover, the maximum degradation rates were 0.13 and 0.18 mg-NAP/(l h) depending on the concentration of nitrate. Based on 16S rDNA analysis, the denitrifying enriched culture was mainly composed of ??-Proteobacteria (19 clones out of a total of 23 clones) and Actinobacteria (4 clones). Using a primer set specific for naphthalene degrading functional gene nahAc, two operational taxonomy units were obtained in the clone library of nahAc. Both of them were closely related to nahAc genes of known species of Pseudomonas. Quantitative polymerase chain reaction (qPCR) was employed to quantify the change of naphthalene-degrading population during the degradation of naphthalene using nahAc gene as the biomarker. The maximum degradation rate and removal efficiency were strongly correlated with nahAc gene copy number, with R2 of 0.69 and 0.79, respectively.  相似文献   
1000.
Abstract: Comparisons of the activity of the G protein-mediated phosphoinositide signal transduction system and of G protein levels were made in two regions of frontal cortex from eight schizophrenic, alcohol-dependent, and control subjects. G protein-mediated phosphoinositide hydrolysis was measured by stimulating cortical membranes incubated with [3H]phosphatidylinositol with 0.3–10 µM guanosine 5′-O-(3-thio)triphosphate (GTPγS). In frontal cortex areas 8/9, GTPγS-induced phosphoinositide hydrolysis was 50% greater in schizophrenic than control or alcohol-dependent subjects, whereas there were no differences among these groups of subjects in the response to GTPγS in frontal cortex area 10. Agonists for dopaminergic, cholinergic, purinergic, serotonergic, histaminergic, and glutamatergic receptors coupled to the phosphoinositide signaling system increased [3H]phosphatidylinositol hydrolysis in a GTPγS-dependent manner. Responses to most agonists were similar in all three subject groups in both cortical regions, with the largest difference being a 40% greater response to dopaminergic receptor stimulation in frontal cortex 8/9 from schizophrenic subjects. Measurements of the levels of phospholipase C-β, and of α-subunits of Gq, Go, Gi1, Gi2, and Gs, made by immunoblot analyses revealed no differences among the groups of subjects except for increased Gαo in schizophrenic subjects and increased Gαo and Gαi1 in alcohol-dependent subjects. These results demonstrate that schizophrenia is associated with increased activity of the phosphoinositide signal transduction system and increased levels of Gαo, whereas the phosphoinositide system was unaltered in alcohol dependence, but Gαo and Gαi1 were increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号