首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   24篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   10篇
  2012年   15篇
  2011年   11篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1987年   4篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1961年   1篇
  1957年   1篇
  1929年   1篇
  1926年   1篇
排序方式: 共有214条查询结果,搜索用时 31 毫秒
131.
Populations that are connected by immigrants play an important role in evolutionary and conservation biology, yet we have little direct evidence of how such metapopulations change genetically over evolutionary time. We compared historic (1894–1906) to modern (1988–2006) genetic variation in 11 populations of warbler finches at 14 microsatellite loci. Although several lines of evidence suggest that Darwin's finches may be in decline, we found that the genetic diversity of warbler finches has not generally declined, and broad‐scale patterns of variation remained similar over time. Contrary to expectations, inferred population sizes have generally increased over time (6–8%) as have immigration rates (8–16%), which may reflect a recent increase in the frequency and intensity of El Niño events. Individual island populations showed significant declines (18–19%) and also substantial gains (18–20%) in allelic richness over time. Changes in genetic diversity were correlated with changes in immigration rates, but did not correspond to population size or human disturbance. These results reflect the expected stabilizing properties of whole metapopulations over time. However, the dramatic and unpredictable changes observed in individual populations during this short time interval suggests that care should be taken when monitoring individual population fragments with snapshots of genetic variation.  相似文献   
132.
A survey of two Amazonian melastome ant‐plants, Maieta guianensis and Tococa bullifera, revealed a significant difference in plant size according to the species of ant inhabiting the plant. Plants with Crematogaster laevis, on average, were smaller than those with Pheidole minutula (in M. guianensis) and those with Azteca sp. (in T. bullifera). There is no evidence that these patterns were due either to the deterministic replacement of C. laevis by another ant species during host‐plant ontogeny or to a habitat effect on plant growth rates coupled with colony survival. More likely, the smaller size of C. laevis plants can be explained by its effects on host‐plant performance. Plants with C. laevis lost their associated ant colonies more frequently than plants with P. minutula and Azteca sp. Plants that lost their C. laevis either died, or more commonly, were severely defoliated. Defoliated plants, once sprouted, tended to become recolonized, but such recolonizations were not deterministic so as to favor one species over another. Plants with C. laevis showed similar, or only slightly greater, standing levels of herbivory than plants with P. minutula or Azteca sp. This suggests that when C. laevis is present, it confers some degree of protection to its hosts. It was found that early in colony development, queens of C. laevis moved off their host plants to build satellite nests in dead twigs on the ground, a behavior not seen in the other two species and one that possibly renders colonies more vulnerable to mortality from predation, flooding, or nest decay. Comparable 815N values in C. laevis and P. minutula indicate that the two species are equally dependent on food supplied by the host plant.  相似文献   
133.
Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.  相似文献   
134.
New compounds are needed to treat parasitic nematode infections in humans, livestock and plants. Small molecule anthelmintics are the primary means of nematode parasite control in animals; however, widespread resistance to the currently available drug classes means control will be impossible without the introduction of new compounds. Adverse environmental effects associated with nematocides used to control plant parasitic species are also motivating the search for safer, more effective compounds. Discovery of new anthelmintic drugs in particular has been a serious challenge due to the difficulty of obtaining and culturing target parasites for high-throughput screens and the lack of functional genomic techniques to validate potential drug targets in these pathogens. We present here a novel strategy for target validation that employs the free-living nematode Caenorhabditis elegans to demonstrate the value of new ligand-gated ion channels as targets for anthelmintic discovery. Many successful anthelmintics, including ivermectin, levamisole and monepantel, are agonists of pentameric ligand-gated ion channels, suggesting that the unexploited pentameric ion channels encoded in parasite genomes may be suitable drug targets. We validated five members of the nematode-specific family of acetylcholine-gated chloride channels as targets of agonists with anthelmintic properties by ectopically expressing an ivermectin-gated chloride channel, AVR-15, in tissues that endogenously express the acetylcholine-gated chloride channels and using the effects of ivermectin to predict the effects of an acetylcholine-gated chloride channel agonist. In principle, our strategy can be applied to validate any ion channel as a putative anti-parasitic drug target.  相似文献   
135.
136.
137.
This study analyzed the effects of tree size, and correlated architectural tree characteristics, on the assemblages of ants and insect herbivores associated with Anadenanthera macrocarpa (Mimosaceae). The latter is a myrmecophilous tree species from the Atlantic rainforest in south-eastern Brazil. Ants and insect herbivores were collected in 30 individuals of A. macrocarpa , ranging from young individuals (>3 m in height) to emergent trees (up to 40 m). Tree height was a strong indicator of other tree characteristics, including trunk diameter, crown height, crown volume, and number of bifurcations. Ants were collected using arboreal pitfall traps and beating, while insect herbivores with beating only. There was a significant increase in both abundance and species richness of ants and insect herbivores with an increase in tree height. In addition, tree height had a significant effect on the species composition of ants and insect herbivores. Assemblages of both taxa showed a nested organization pattern. The species found in small- and medium-sized trees, in general, consisted of a subset of the species found in the crowns and branches of larger, canopy or emergent trees. Thus, in A. macrocarpa , there was not a replacement of insect species with plant ontogeny. This finding is at variance with those conducted in tropical evergreen forests and which show a clear stratification between the understory and canopy insect faunas. Additional studies are needed to explain these contrasting patterns, but it is possible that differences in microclimate are involved. As the forest we studied is semi-deciduous, microclimatic gradients between the understory and the canopy habitat are probably less severe than in an evergreen forest, thus resulting in a lower turnover of species.  相似文献   
138.
139.
Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.  相似文献   
140.
The objectives of this work were to determine the effect of external (synchronization methods, month, embryo origin and farm effects) and internal factors (age and size of CL, embryo development and quality score, synchronization methods, age of recipient, quality of transfer and reuse of recipients) on a commercial embryo transfer program in a tropical environment. In the program 1466 Holstein-Friesian purchased embryos were implanted to zebu/European crossbred recipients under field conditions. There were 502 pregnancies detected in this large-scale extension programme. Synchronization methods, month, embryo origin, and farm effects were found to have affected the success rate of embryo transfer. Due to the hot climate and large distances between recipient farms, seasonal effects, reused recipient pregnancy results and the effect of embryo development stage differed from previously reported results. Investigation by ultrasonograph showed that embryo loss occurred before 35 days of pregnancy. Under field conditions, routine fetal sexing resulted in <5% misidentification. In conclusion, under tropical conditions external factors have a major influence on the results of pregnancy from embryo transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号