全文获取类型
收费全文 | 780篇 |
免费 | 47篇 |
国内免费 | 1篇 |
专业分类
828篇 |
出版年
2023年 | 4篇 |
2022年 | 16篇 |
2021年 | 28篇 |
2020年 | 18篇 |
2019年 | 18篇 |
2018年 | 27篇 |
2017年 | 16篇 |
2016年 | 26篇 |
2015年 | 49篇 |
2014年 | 51篇 |
2013年 | 62篇 |
2012年 | 81篇 |
2011年 | 82篇 |
2010年 | 42篇 |
2009年 | 38篇 |
2008年 | 59篇 |
2007年 | 39篇 |
2006年 | 35篇 |
2005年 | 27篇 |
2004年 | 26篇 |
2003年 | 11篇 |
2002年 | 24篇 |
2001年 | 13篇 |
2000年 | 13篇 |
1999年 | 3篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1992年 | 4篇 |
1988年 | 2篇 |
1982年 | 2篇 |
排序方式: 共有828条查询结果,搜索用时 15 毫秒
21.
Heo KS Kim DU Kim L Nam M Baek ST Park SK Park Y Myung CS Hwang SO Hoe KL 《Biochemical and biophysical research communications》2008,368(1):126-131
Native LDL may be a mitogenic stimulus of VSMC proliferation in lesions where endothelial disruption occurs. Recent studies have demonstrated that the mitogenic effects of LDL are accompanied by Erk1/2 activation via an unknown G-protein-coupled receptor (GPCR). In this article, we report that LDL translocated PKCβII and PKCθ from cytosol to plasma membrane, and inhibition of PKCβII and PKCθ decreased LDL effects via the deactivation of Erk1/2. Moreover, pertussis toxin, but not cholera toxin or heparin, inhibited LDL-induced translocation of PKCβII and PKCθ, suggesting that Gi protein plays a role in LDL effects. Of LPA, S1P, and LDL, whose signaling is conveyed via Gi/o proteins, only LDL induced translocation of PKCβII and PKCθ. Inhibition of PKCβII or PKCθ, as well as of Erk1/2 and GPCR, decreases LDL-induced upregulation of Egr-1, which is critical for cell proliferation. This is the first report, to our knowledge, that the participation of PKCθ in VSMC proliferation is unique. 相似文献
22.
Seung Yeon Shin Soochahn Lee Il Dong Yun Ho Yub Jung Yong Seok Heo Sun Mi Kim Kyoung Mu Lee 《PloS one》2015,10(12)
In this paper, we present a novel cascaded classification framework for automatic detection of individual and clusters of microcalcifications (μC). Our framework comprises three classification stages: i) a random forest (RF) classifier for simple features capturing the second order local structure of individual μCs, where non-μC pixels in the target mammogram are efficiently eliminated; ii) a more complex discriminative restricted Boltzmann machine (DRBM) classifier for μC candidates determined in the RF stage, which automatically learns the detailed morphology of μC appearances for improved discriminative power; and iii) a detector to detect clusters of μCs from the individual μC detection results, using two different criteria. From the two-stage RF-DRBM classifier, we are able to distinguish μCs using explicitly computed features, as well as learn implicit features that are able to further discriminate between confusing cases. Experimental evaluation is conducted on the original Mammographic Image Analysis Society (MIAS) and mini-MIAS databases, as well as our own Seoul National University Bundang Hospital digital mammographic database. It is shown that the proposed method outperforms comparable methods in terms of receiver operating characteristic (ROC) and precision-recall curves for detection of individual μCs and free-response receiver operating characteristic (FROC) curve for detection of clustered μCs. 相似文献
23.
Woojin M. Han Su-Jin Heo Tristan P. Driscoll Lachlan J. Smith Robert L. Mauck Dawn M. Elliott 《Biophysical journal》2013
Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35–70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15–25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation. 相似文献
24.
Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells 总被引:12,自引:0,他引:12
Ma J Wang Y Yang J Yang M Chang KA Zhang L Jiang F Li Y Zhang Z Heo C Suh YH 《Neurochemistry international》2007,51(1):57-65
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE. 相似文献
25.
Heo KS Ryoo SW Kim L Nam M Baek ST Lee H Lee AR Park SK Park Y Myung CS Kim DU Hoe KL 《Molecules and cells》2008,26(5):468-473
Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that Cl- channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of Cl-channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. Cl- channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated Cl- concentration, as judged by flow cytometry analysis using MQAE as a Cl- -detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS (Cl- channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive Cl- channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1. 相似文献
26.
27.
28.
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis. 相似文献
29.
Bonsu Ku Kwang-Hoon Lee Wei Sun Park Chul-Su Yang Jianning Ge Seong-Gyu Lee Sun-Shin Cha Feng Shao Won Do Heo Jae U. Jung Byung-Ha Oh 《PLoS pathogens》2012,8(12)
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism. 相似文献