首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   73篇
  国内免费   9篇
  2021年   4篇
  2019年   5篇
  2018年   8篇
  2017年   5篇
  2016年   9篇
  2015年   20篇
  2014年   18篇
  2013年   20篇
  2012年   22篇
  2011年   29篇
  2010年   17篇
  2009年   16篇
  2008年   20篇
  2007年   25篇
  2006年   28篇
  2005年   26篇
  2004年   18篇
  2003年   21篇
  2002年   21篇
  2001年   15篇
  2000年   15篇
  1999年   22篇
  1998年   15篇
  1997年   11篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   15篇
  1990年   11篇
  1989年   13篇
  1988年   15篇
  1987年   13篇
  1986年   14篇
  1985年   10篇
  1983年   6篇
  1982年   8篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1974年   6篇
  1973年   5篇
  1972年   3篇
  1971年   9篇
  1970年   6篇
  1969年   9篇
  1968年   3篇
  1967年   4篇
  1955年   3篇
排序方式: 共有644条查询结果,搜索用时 31 毫秒
61.
Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.  相似文献   
62.
Apoptotic cells are removed from tissues by uptake mechanisms that depend on the GTPase Rac (CED-10 in C. elegans), which is activated by DOCK180/CED-5 in a trimolecular complex with ELMO/CED-12 and CrkII/CED-2. A study now identifies upstream components of this pathway in both worms and mammalian cells involving yet another GTPase, RhoG/MIG-2, and its activator TRIO/UNC-73.  相似文献   
63.
This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine.  相似文献   
64.
65.
During apoptotic stimulation, the serine threonine kinase, MEKK1, is cleaved into an activated 91 kDa kinase fragment. This cleavage is mediated by caspase 3 and leads to further caspase 3 activation and apoptosis. Forced expression of the 91 kDa kinase fragment induces apoptosis through changes in membrane potential of the mitochondria mediated by permeability transition pore opening. MEKK1 activation, however, fails to release cytochrome c from the mitochondria. Herein, we determined that overexpression of MEKK1 causes mitochondrial Smac/Diablo release correlating with MEKK1-induced apoptosis. Furthermore, using siRNA that lowers Smac/Diablo expression, MEKK1-induced apoptosis was significantly reduced. Mouse embryonic fibroblast cells lacking MEKK1 expression are also resistant to etoposide-induced mitochondrial Smac/Diablo release. In contrast, etoposide-induced mitochondrial cytochrome c release was not inhibited. MEKK1 also activates the MAP kinase JNK, but MEKK1-induced mitochondrial Smac/Diablo release and apoptosis are independent of MEKK1 mediated JNK activation. Taken together, release of Smac/Diablo from the mitochondria plays a role in MEKK1-induced apoptosis.  相似文献   
66.
Normal spontaneous apoptosis in neutrophils is enhanced by "stress" stimuli such as tumor necrosis factor-alpha, Fas ligand, and oxidants, and this effect is inhibited by anti-apoptotic stimuli including granulocyte-macrophage colony-stimulating factor, lipopolysaccharide, and formylmethionine-leucine-phenylalanine. In this report we demonstrate that anti-apoptotic stimuli protect neutrophils from stress-induced apoptosis via activation of the ERK/MAPK pathway. The protection occurs downstream of mitochondrial alterations assessed as a decrease in membrane potential concomitant with enhanced cytochrome c release. ERK activation was shown to inhibit apoptosis by maintaining levels of XIAP, which is normally decreased in the presence of the pro-apoptotic/stress stimuli. This report also demonstrates that potent intra- and extracellular oxidants inhibit the protective effect of ERK. Oxidant-dependent inhibition of ERK was because of activation of p38 MAPK and activation of the protein phosphatases PP1 and PP2A. Our data suggest that ERK suppresses stress-induced apoptosis downstream of mitochondrial alterations by maintaining XIAP levels and that oxidants block this effect through activation of p38 and protein phosphatases.  相似文献   
67.
Although important for apoptosis, the mechanism of Bax regulation is poorly understood. This study demonstrates that phosphorylation of Ser(184) regulates Bax activity. The phosphorylation required phosphatidylinositol 3-kinase/Akt activation and appeared to be mediated by Akt itself. In the serine-phosphorylated form, Bax was detected in the cytoplasm, could not be immunoprecipitated with the activation-specific antibody 6A7, and promoted heterodimerization with Mcl-1, Bcl-x(L), and A1. Apoptotic neutrophils possessed reduced levels of serine-phosphorylated Bax correlating with an increase in activated Bax as well as an increase in the amount of Bax found translocated to the mitochondria. We suggest that Bax is regulated by phosphorylation of Ser(184) in an Akt-dependent manner and that phosphorylation inhibits Bax effects on the mitochondria by maintaining the protein in the cytoplasm, heterodimerized with antiapoptotic Bcl-2 family members.  相似文献   
68.
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant) were used as phagocytes. When l(2)mbn cells were treated with the molting hormone 20-hydroxyecdysone, the cells acquired the ability to phagocytose apoptotic S2 cells, another Drosophila cell line. S2 cells undergoing cycloheximide-induced apoptosis exposed phosphatidylserine on their surface, but their engulfment by l(2)mbn cells did not seem to be mediated by phosphatidylserine. The level of Croquemort, a candidate phagocytosis receptor of Drosophila hemocytes/macrophages, increased in l(2)mbn cells after treatment with 20-hydroxyecdysone, whereas that of Draper, another candidate phagocytosis receptor, remained unchanged. However, apoptotic cell phagocytosis was reduced when the expression of Draper, but not of Croquemort, was inhibited by RNA interference in hormone-treated l(2)mbn cells. We next examined whether Draper is responsible for the phagocytosis of apoptotic cells in vivo using an assay for engulfment based on assessing DNA degradation of apoptotic cells in dICAD mutant embryos (which only occurred after ingestion by the phagocytes). RNA interference-mediated decrease in the level of Draper in embryos of mutant flies was accompanied by a decrease in the number of cells containing fragmented DNA. Furthermore, histochemical analyses of dispersed embryonic cells revealed that the level of phagocytosis of apoptotic cells by hemocytes/macrophages was reduced when Draper expression was inhibited. These results indicate that Drosophila hemocytes/macrophages execute Draper-mediated phagocytosis to eliminate apoptotic cells.  相似文献   
69.
The treatment of severe lung disease often requires the use of high concentrations of oxygen coupled with the need for assisted ventilation, potentially exposing the pulmonary epithelium to both reactive oxygen species and nonphysiological cyclic stretch. Whereas prolonged hyperoxia is known to cause increased cell injury, cyclic stretch may result in either cell proliferation or injury depending on the pattern and degree of exposure to mechanical deformation. How hyperoxia and cyclic stretch interact to affect the pulmonary epithelium in vitro has not been previously investigated. This study was performed using human alveolar epithelial A549 cells to explore the combined effects of cyclic stretch and hyperoxia on cell proliferation and viability. Under room air conditions, cyclic stretch did not alter cell viability at any time point and increased cell number after 48 h compared with unstretched controls. After exposure to prolonged hyperoxia, cell number and [(3)H]thymidine incorporation markedly decreased, whereas evidence of oxidative stress and nonapoptotic cell death increased. The combination of cyclic stretch with hyperoxia significantly mitigated the negative effects of prolonged hyperoxia alone on measures of cell proliferation and viability. In addition, cyclic stretch resulted in decreased levels of oxidative stress over time in hyperoxia-exposed cells. Our results suggest that cyclic stretch, as applied in this study, can minimize the detrimental effects of hyperoxia on alveolar epithelial A549 cells.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号