首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   20篇
  国内免费   1篇
  2021年   5篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   10篇
  2012年   13篇
  2011年   16篇
  2010年   6篇
  2009年   9篇
  2008年   11篇
  2007年   12篇
  2006年   5篇
  2005年   12篇
  2004年   7篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   11篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1975年   4篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
  1930年   1篇
  1919年   1篇
  1903年   1篇
排序方式: 共有260条查询结果,搜索用时 46 毫秒
241.
Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin‐based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well‐accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single‐use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study of Hydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin‐based phototransduction pathway homologous to that previously described in Hydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria.  相似文献   
242.
Human-to-human transmission of influenza viruses is a serious public health threat, yet the precise role of immunity from previous infections on the susceptibility to airborne infection is still unknown. Using the ferret model, we examined the roles of exposure duration and heterosubtypic immunity on influenza transmission. We demonstrate that a 48 hour exposure is sufficient for efficient transmission of H1N1 and H3N2 viruses. To test pre-existing immunity, a gap of 8–12 weeks between primary and secondary infections was imposed to reduce innate responses and ensure robust infection of donor animals with heterosubtypic viruses. We found that pre-existing H3N2 immunity did not significantly block transmission of the 2009 H1N1pandemic (H1N1pdm09) virus to immune animals. Surprisingly, airborne transmission of seasonal H3N2 influenza strains was abrogated in recipient animals with H1N1pdm09 pre-existing immunity. This protection from natural infection with H3N2 virus was independent of neutralizing antibodies. Pre-existing immunity with influenza B virus did not block H3N2 virus transmission, indicating that the protection was likely driven by the adaptive immune response. We demonstrate that pre-existing immunity can impact susceptibility to heterologous influenza virus strains, and implicate a novel correlate of protection that can limit the spread of respiratory pathogens through the air.  相似文献   
243.
Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3′ single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.  相似文献   
244.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.  相似文献   
245.
A major obstacle to the use of adenovirus vectors derived from common human serotypes, such as human adenovirus 5 (AdHu5), is the high prevalence of virus-neutralizing antibodies in the human population. We previously constructed a variant of chimpanzee adenovirus 68 (AdC68) that maintained the fundamental properties of the carrier but was serologically distinct from AdC68 and resisted neutralization by AdC68 antibodies. In the present study, we tested whether this modified vector, termed AdCDQ, could induce transgene product-specific CD8+ T cells in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ mutant vector in vitro nevertheless impair the vector''s capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on adenovirus vectors in vivo.Adenovirus (Ad) vectors are effective at inducing potent CD8+ T-cell responses to immunogens. In animal models, Ad vectors encoding antigens of simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV), used in combination with plasmid-based DNA vectors, generate CD8+ T-cell responses that attenuate infection by SIV (9) and by HIV-SIV chimeras (16). In humans, Ad vectors derived from human serotype 5 (AdHu5) are immunogenic and are well tolerated at immunogenic doses; however, in a recent clinical trial, an AdHu5-based HIV-1 vaccine failed to prevent (and may have facilitated) infection (1a). It is not clear whether CD8+ T-cell responses will be sufficient to prevent or control HIV infection and disease. However, it seems likely that the induction of effective immune responses against HIV will require multiple doses of antigen, with a priming dose followed by one or more booster immunizations. Prime-boost regimens based on the sequential use of DNA and AdHu5 vectors are being tested clinically, and regimens involving the sequential administration of serologically distinct Ad vectors are being explored in preclinical animal models (1, 5, 8, 9).One major obstacle to the use of vectors derived from AdHu5 and other common human serotypes is the high prevalence of virus-neutralizing antibodies (VNAs) in humans. Preexisting VNAs to the vaccine carrier prevent the vector from transducing target cells, which reduces the amount of vaccine antigen that can be produced and dampens the resultant adaptive immune responses (2, 3, 12). Approximately 40 to 45% of the U.S. population has VNAs to AdHu5, and seroprevalence rates are even higher in Asia and Africa (6, 24).We developed vectors derived from chimpanzee Ads to which humans lack preexisting immunity. When tested in a rodent model, one such vector, AdC68, induces potent transgene product-specific CD8+ T-cell responses that can be increased by booster immunizations with serologically distinct Ad vectors (3, 19, 23). However, because the use of multiple serotypes in a prime-boost regimen may prove cumbersome in clinical applications, we have attempted to modify the major neutralizing binding sites within the AdC68 capsid. It has been suggested that the binding sites for Ad-neutralizing antibodies preside primarily within the major capsid protein hexon (4, 10, 14, 15, 17). We defined a single hexon surface loop as the major neutralization site on AdC68 and showed that a mutant vector, AdCDQ, which incorporates a 3-amino-acid mutation within this loop, resists in vitro neutralization by polyclonal antisera obtained from animals immunized against AdC68 (10). Because it is serologically distinct from its parent vector, we expected that AdCDQ could be used in combination with AdC68 in an effective prime-boost regimen.In the present study, we tested whether the AdCDQ vector induces a transgene product-specific CD8+ T-cell response in mice with preexisting neutralizing antibody to wild-type AdC68. Contrary to our expectation, the data show conclusively that antibodies that fail to neutralize the AdCDQ vector in vitro nevertheless impair the vector''s capacity to transduce cells and to stimulate a transgene product-specific CD8+ T-cell response in vivo. The results thus suggest that in vitro neutralization assays may not reliably predict the effects of virus-specific antibodies on Ad vectors in vivo.  相似文献   
246.
Murine norovirus (MNV) is endemic in many research mouse colonies. Although MNV infections are typically asymptomatic in immunocompetent mice, the effects of MNV infection on subsequent experimental viral infections are poorly documented. Here, we infected C57BL/6 mice with MNV and then with either vaccinia virus or influenza A virus. MNV infection had no effect on CD8+ T-cell or antibody responses to secondary viruses or to secondary virus-induced morbidity or mortality. While our findings suggest that MNV has little influence on host immunity in immunocompetent mice, we would urge caution regarding the potential effects of MNV on immune responses to viruses and other pathogens, which must be determined on a system-by-system basis.Human norovirus (NoV) infections cause greater than 90% of nonbacterial gastroenteritis cases (4, 5) and are an important public health concern. Murine noroviruses (MNV) were recently identified (7) as highly pathogenic agents in immunocompromised mice, and serological studies indicate that over 20% of mice in research colonies are exposed to MNV (6). As with NoV, MNV is spread through the fecal-oral route. While NoV rapidly causes gastrointestinal symptoms and fever in healthy individuals, MNV is typically asymptomatic in immunocompetent mice.MNV isolates are both genetically and biologically diverse (13). In wild-type (wt) mice, some strains of MNV are rapidly cleared, while others persist (13). Controlling MNV infections requires elements of both innate and adaptive immunity. Mice with defects in interferon (IFN) signaling pathways demonstrate increased MNV lethality (7, 9). CD4+ and CD8+ T cells and B cells are all needed for complete MNV clearance (1, 2). Natural exposure of immunocompromised mice to MNV leads to inflammation of the liver, lungs, and peritoneal and pleural cavities (14).It is well established that infection with natural mouse viruses can greatly impact immune responses to infections with other viruses. The prevalence of MNV in research mouse colonies might therefore lead to irreproducible and variable results that significantly impact research efforts. Indeed, MNV was recently reported to alter disease progression in a mouse model of bacterium-induced inflammatory bowel disease (8). Concern over the potential effects of MNV on viral immunology research prompted a dedicated workshop at the 2008 Keystone Viral Immunity meeting (http://www.keystonesymposia.org). In the present study, we examined the effect of MNV infection on adaptive immune responses in wt mice to influenza A virus (IAV) and vaccinia virus (VV).We infected C57BL/6 mice perorally with a high dose (3 × 107 PFU/mouse) of a plaque-purified MNV stock derived from MNV-CR6p2 (13). The capacity of this plaque-purified virus to persist in wt mice has been confirmed by quantitative PCR analysis and a plaque assay (D. Strong, L. Thackray, and H. Virgin, unpublished observation). We confirmed that the mice were infected by measuring anti-MNV antibodies (Abs) by using an enzyme-linked immunosorbent assay (ELISA) (data not shown). For all experiments, mice were infected with MNV at Washington University and shipped 4 to 5 days later to NIAID for further study. To contain MNV, infected mice were housed in microisolator cages in a quarantine room. In some experiments, control mice were housed in the same room as MNV-infected mice. Sera collected from control mice did not contain anti-MNV Abs as determined by ELISA (data not shown), confirming that transmission of MNV between mice housed in microisolator cages can be prevented by proper cage changing and aseptic handling of samples from infected mice.Upon intraperitoneal (i.p.) infection with either VV or IAV, mice mount robust CD8+ T-cell responses that peak, respectively, on day 6 or 7. Anti-VV and anti-IAV CD8+ T-cell responses in C57BL/6 mice conform to a well-established immunodominance hierarchy (3, 10). To determine to what extent MNV infection alters the magnitude and/or immunodominance hierarchy of CD8+ T-cell responses, we infected C57BL/6 mice i.p. with either VV or IAV 19 days following MNV infection. As controls, naïve mice (MNV negative) were infected with either virus. Lymphocytes were isolated from mice 6 days postinfection with VV and 7 days postinfection with IAV. The fraction of antigen-specific CD8+ T cells present in spleen and peritoneal exudate cells (PEC) was determined by intracellular IFN-γ staining after stimulation with synthetic peptides. MNV infection had little effect on the magnitude of splenic or PEC CD8+ T cells responding to VV (Fig. 1A and B) or IAV (Fig. 1C and D) infection. Regardless of MNV exposure history, splenic and PEC responses were dominated by B8R- and A8R-specific CD8+ T cells following VV infection (Fig. 1A and B) and by PA-specific and NP-specific CD8+ T cells following IAV infection (Fig. 1C and D).Open in a separate windowFIG. 1.MNV exposure does not alter CD8+ T-cell responses to VV or IAV. MNV-infected and naïve C57BL/6 mice were infected i.p. with ∼1 × 106 PFU of VV (A and B) or ∼1 × 107 50% tissue culture infective dose units of IAV (C and D), and specific CD8+ T cells were determined by intracellular IFN-γ staining after restimulating lymphocytes with peptides. Lymphocytes isolated from the spleen (A and C) and peritoneal cavity (B and D) were tested. MNV infections were completed 19 days prior to VV or IAV infections. Means and SEM are shown in panels A and C. A two-way analysis of variance and Bonferroni statistical analysis were completed for these experiments. Cells were pooled for peritoneal lavage samples as shown in panels B and D. Four to five mice/group were used for each experiment; data are representative of two independent experiments.To examine the effect of MNV infection on antiviral Ab responses, MNV-infected and control C57BL/6 mice were infected intranasally (i.n.) with a sublethal dose of either VV or IAV. Three weeks later, levels of anti-VV and anti-IAV Abs were determined by ELISA and hemagglutination inhibition assays, respectively. MNV infection did not significantly modify the magnitude of Ab responses to VV (Fig. (Fig.2A)2A) or IAV (Fig. (Fig.2B).2B). Next, we determined the effect of MNV infection on heavy chain class switching of anti-VV or anti-IAV Ab responses. Anti-VV and anti-IAV Ab responses exhibited similar heavy chain profiles dominated by immunoglobulin G2b (IgG2b) Abs regardless of MNV status (Fig. 2C and D). Thus, the CD8+ T-cell and Ab response to both VV and IAV appears to be essentially unaffected by chronic MNV infection. Since IgG anti-VV or anti-IAV Ab responses are entirely dependent on CD4+ T-cell help (11, 12), we can also infer that MNV also does not significantly affect CD4+ T-cell responses to VV or IAV.Open in a separate windowFIG. 2.MNV exposure does not alter Ab responses to VV or IAV. MNV-infected and naïve C57BL/6 mice were infected i.n. with ∼1 × 103 PFU of VV (A and C) or ∼50 50% tissue culture infective dose units of IAV (B and D), and virus-specific Abs were determined by ELISA (A, C, and D) or hemagglutination inhibition (B). The ELISA results shown in panel A measured the total IgG, while the ELISA results shown in panels C and D measured the individual isotype indicated. MNV infections were completed 19 days prior to VV or IAV infections. Means and standard errors of the means are shown in panels A, C, and D. Means are shown as lines in panel B. A two-way analysis of variance and Bonferroni statistical analysis were completed for experiments shown in panels A, C, and D, and t tests were completed for the experiment shown in panel B. Four to five mice/group were used for each experiment. O.D., optical density; HAI, hemagglutination inhibition.T-cell and Ab responses, together with innate immune mechanisms, collaborate to control viral replication and limit pathogenesis. To examine the effect of chronic MNV infection on VV-induced or IAV-induced pathogenesis, we infected C57BL/6 mice i.n. with a lethal or sublethal dose of VV or IAV and monitored body weight over a 16-day period. MNV-CR6p2 infection had no significant effect on morbidity or mortality from either virus (Fig. (Fig.33 and and4).4). Since MNV isolates are highly diverse, we decided to examine the effects of a second strain of MNV (MNV-CW3) which is fully cleared in immunocompetent mice. Mice that cleared MNV-CW3 (19 days post-MNV infection) were infected i.n. with VV or IAV. Once again, this strain of MNV had no effect on VV-induced or IAV-induced morbidity or mortality (Fig. (Fig.33 and and4).4). Future studies should address the extent to which other MNV strains affect the generation of adaptive immune responses to secondary viral infections.Open in a separate windowFIG. 3.MNV does not increase morbidity following subsequent i.n. infection with VV or IAV. MNV-infected and naïve C57BL/6 mice were infected i.n. with a sublethal dose of VV (∼1 × 103 PFU) (A) or IAV (∼50 50% tissue culture infective dose units) (B), and weight loss was recorded for 16 days postinfection. MNV infections were completed 19 days prior to VV or IAV infections. A two-way analysis of variance and Bonferroni statistical analysis were completed. Four to five mice/group were used for each experiment.Open in a separate windowFIG. 4.MNV does not increase mortality following subsequent i.n. infection with VV or IAV. MNV-infected and naïve C57BL/6 mice were infected i.n. with VV (∼1 × 104 PFU) (A) or IAV (∼500 50% tissue culture infective dose units) (B), and survival was monitored for 16 days postinfection. MNV infections were completed 19 days prior to VV or IAV infections. Eight to 10 mice/group were used for each experiment.Taken together, these data demonstrate that MNV infection has no significant effects on the measured immune response to VV or IAV. Our results cannot, however, be simply extrapolated to other viruses or microorganisms. Rather, the effect of MNV infection on host immunity in mouse model disease systems needs to be established on a system-by-system basis. Without this knowledge, the possible confounding effects of MNV infection will continue to undermine the confidence in results obtained using mice in colonies in which MNV infections are endemic.  相似文献   
247.
p38 kinase is activated in the Alzheimer's disease brain   总被引:19,自引:0,他引:19  
The p38 mitogen-activated protein kinase is a stress-activated enzyme responsible for transducing inflammatory signals and initiating apoptosis. In the Alzheimer's disease (AD) brain, increased levels of phosphorylated (active) p38 were detected relative to age-matched normal brain. Intense phospho-p38 immunoreactivity was associated with neuritic plaques, neuropil threads, and neurofibrillary tangle-bearing neurons. The antibody against phosphorylated p38 recognized many of the same structures as an antibody against aberrantly phosphorylated, paired helical filament (PHF) tau, although PHF-positive tau did not cross-react with the phospho-p38 antibody. These findings suggest a neuroinflammatory mechanism in the AD brain, in which aberrant protein phosphorylation affects signal transduction elements, including the p38 kinase cascade, as well as cytoskeletal components.  相似文献   
248.
The soluble form of dopamine beta-hydroxylase from bovine adrenal medulla has previously been shown to exist as a tetrameric species of Mr = 290,000 composed of two disulfide-linked dimers. Here we report that this enzyme can also undergo a reversible tetramerdimer dissociation which is dependent on pH. Gel permeation chromatography of dopamine beta-hydroxylase at pH 5.0 demonstrates a Stokes radius of 5.8 nm. When the pH is shifted to 5.7, the Stokes radius changes to 6.9 nm. Sedimentation equilibrium analysis of the purified enzyme demonstrates that this change in molecular size is due to a change in molecular weight. At low protein concentration, the estimated Mr of the enzyme is 145,000 at pH 5.0 and at high protein concentration approaches 290,000 at pH 5.7. This change in Mr is consistent with the existence of a tetramer-dimer dissociation and a change in the equilibrium constant from 1.8 X 10(-6) M to 1.16 X 10(-9) M when the pH is increased from 5.0 to 5.7. This pH-dependent subunit dissociation is correlated with pH-dependent changes in enzyme activity. Purified bovine-soluble dopamine beta-hydroxylase activity is a hyperbolic function of tyramine concentration at pH 5.0. However, the hydroxylase activity displays non-hyperbolic kinetics at pH 6.0. The kinetic data obtained at pH 6.0 can be accounted for by fitting to a model containing two nonidentical catalytic forms of enzyme generated by the pH-dependent partial dissociation of tetrameric enzyme to dimeric subunits. The two catalytic forms have apparently identical maximal velocities; however, they differ in their Michaelis constants for the substrate; the dimeric form having a low Km and the tetrameric form having a high Km. Since the pH inside bovine adrenal medullary chromaffin granules is approximately 5.5, we conclude that the subunits of dopamine beta-hydroxylase are in dynamic dissociation in a physiologically important pH range.  相似文献   
249.
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号