首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   20篇
  国内免费   1篇
  2021年   5篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   10篇
  2012年   13篇
  2011年   16篇
  2010年   6篇
  2009年   9篇
  2008年   11篇
  2007年   12篇
  2006年   5篇
  2005年   12篇
  2004年   7篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   11篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1975年   4篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
  1930年   1篇
  1919年   1篇
  1903年   1篇
排序方式: 共有260条查询结果,搜索用时 281 毫秒
101.
The kinetics of the cleavage of superhelical plasmid DNA (pBR322) by the restriction endonuclease, BamHI, have been analyzed in terms a compartmental model consistent with the chemistry first proposed by Rubin and Modrich (Rubin, R. A., and Modrich, P. (1978) Nucleic Acids Res. 5, 2991-2997) for analysis of the kinetics of the restriction endonuclease, EcoRI. The model was defined in terms of two compartments representing DNA substrate (bound and free), two compartments representing nicked intermediate (bound and free), one compartment representing linear product, and one compartment for free enzyme. A simultaneous analysis of concentration changes over time of the three DNA forms (superhelical, nicked, and linear) at six different enzyme concentrations was undertaken employing this compartmental model using SAAM (Simulation Analysis And Modeling) software. Results showed that rate constants characterizing the association of enzyme with superhelical DNA (6.0 x 10(5) M-1 s-1) and nicked DNA (2.8 x 10(5) M-1 s-1) were similar in magnitude and rate constants characterizing cleavage of the first (1.2 x 10(-2) s-1) and second phosphodiester bonds (3.1 x 10(-2) s-1) were also similar. The analysis yields a kinetically determined equilibrium constant of 12.9 nM for the dissociation of nicked intermediate from the enzyme. The rate constant describing the release of the nicked intermediate from the enzyme has a value of 3.7 x 10(-3) s-1. By comparing the value of this release rate constant to the value of the constant describing the second cleavage event, it can be determined that only 10% of the nicked intermediate bound to the enzyme is released as free nicked DNA and that 90% of the nicked intermediate is processed to the linear form without being released. Hence, most of the DNA is cleaved as the result of a single enzyme-DNA recognition event. No steady state assumptions were made in the analysis. The approach was to directly solve the differential equations which described the kinetic processes using an interactive method. This study demonstrates the usefulness of this approach for the analysis of kinetics of protein-DNA interactions for the restriction endonucleases.  相似文献   
102.
In this paper we establish the response of LLC-PK1/Cl4 cells, a pig kidney cell line, to incubation in medium containing 0.25 mM K+. The amounts of the Na,K-ATPase alpha and beta subunits, determined by Western blot, increase coordinately to greater than 2-fold over control by 24 h in low K+ and remained elevated for the duration of the study period (48 h). Na,K-ATPase activity, measured enzymatically, increased 1.4-fold by 24 h and remained elevated. In order to determine if this response was initiated pretranslationally, alpha and beta subunit mRNA levels were determined by Northern blot analysis. While there was no change in alpha-mRNA levels, beta levels increased significantly, to 1.9-fold over control by 6 h of treatment and remained elevated. This selective increase in beta-mRNA was accompanied by 1.6- and 3.1-fold increases in the respective rates of accumulation of newly synthesized alpha and beta subunits, assessed by immunoprecipitating subunits from pulse-labeled cells. The degradation rates of mature Na,K-ATPase subunits did not change during 16 h of exposure to low K+, but after 16 h there was a selective decrease in the alpha degradation rate, relative to control. These results suggest that increased pretranslational regulation of the beta subunit alone is sufficient to increase accumulation of both alpha and beta subunits. These findings support the notion that in LLC-PK1 cells newly synthesized beta is rate-limiting and thus regulates, through alpha beta assembly, the number of pumps transported to the plasma membrane.  相似文献   
103.
The purpose of this study was to determine the effect of thyroid status on the Na,K-ATPase alpha isoforms and beta in rat heart, skeletal muscle, kidney, and brain at the levels of mRNA, protein abundance, and enzymatic activity. Northern and dot-blot analysis of RNA (euthyroid, hypothyroid, and triiodothyronine-injected hypothyroids = hyperthyroids) and immunoblot analysis of protein (euthyroid and hypothyroid) revealed isoform-specific regulation of Na,K-ATPase by thyroid status in kidney, heart, and skeletal muscle and no regulation of sodium pump subunit levels in the brain. In general, in the transition from euthyroid to hypothyroid alpha 1 mRNA and protein levels are unchanged in kidney and skeletal muscle and slightly decreased in heart, while alpha 2 mRNA and protein are decreased significantly in heart and skeletal muscle. In hypothyroid heart and skeletal muscle, the decrease in alpha 2 protein levels was much greater than the decrease in alpha 2 mRNA levels relative to euthyroid indicating translational or post-translational regulation of alpha 2 protein abundance by triiodothyronine status in these tissues. The regulation of beta subunit by thyroid status is tissue-dependent. In hypothyroid kidney beta mRNA levels do not change, but immunodetectable beta protein levels decrease relative to euthyroid, and the decrease parallels the decrease in Na,K-ATPase activity. In hypothyroid heart and skeletal muscle beta mRNA levels decrease; beta protein decreases in heart and was not detected in the skeletal muscle. These findings demonstrate that the euthyroid levels of expression of alpha 1 in heart, alpha 2 in heart and skeletal muscle, and beta in kidney, heart, and skeletal muscle are dependent on the presence of thyroid hormone.  相似文献   
104.
Human thymus tissue was examined from 7 wk of gestation through birth for the expression of antigens reacting with a panel of anti-T cell monoclonal antibodies. Additionally, the reactivities of reagents against the transferrin receptor, against leukocytes, against low m. w. keratins, and against major histocompatibility complex antigens were studied on human fetal thymic tissue. Frozen tissue sections were evaluated by using indirect immunofluorescence assays. At 7 wk of gestation, no lymphoid cells were identified within the epithelial thymic rudiment; however, lymphoid cells reacting with both antibody 3A1, a pan T cell marker, and antibody T200, a pan leukocyte reagent, were identified in perithymic mesenchyme. After lymphoid colonization of the thymic rudiment at 10 wk of fetal gestation, fetal thymic tissue reacted with antibodies T1, T4, and T8. At 12 wk of gestation, antibodies T3, T6, A1G3 (anti-p80, a marker of mature thymocytes), and 35.1 (anti-E rosette receptor) all reacted with thymic tissue. Our findings indicate that T cell antigens were acquired sequentially on thymocytes at discrete stages during the first trimester of human fetal development. The 3A1 antigen was present on fetal lymphocytes before lymphoid cell colonization of thymic epithelium, suggesting that passage through the thymus was not required for the expression of the 3A1 antigen by T cell precursors. The appearance of mature T cell antigens, T3 and p80, on thymocytes by 12 wk of gestation implies that the T cell antigen repertoire may be established in the thymus during the first trimester. Thus, a critical period of T cell maturation appears to occur between 7 and 12 wk of human fetal gestation.  相似文献   
105.
106.
Abstract: Four biomarkers of neuronal protein oxidation [W/S ratio of MAL-6 spin-labeled synaptosomes, phenylhydrazine-reactive protein carbonyl content, glutamine synthetase (GS) activity, creatine kinase (CK) activity] in three brain regions [cerebellum, inferior parietal lobule (IPL), and hippocampus (HIP)] of Alzheimer's disease (AD)-demented and age-matched control subjects were assessed. These endpoints indicate that AD brain protein may be more oxidized than that of control subjects. The W/S ratios of AD hippocampal and inferior parietal synaptosomes are 30 and 46% lower, respectively, than corresponding values of tissue isolated from control brain; however, the difference between the W/S ratios of AD and control cerebellar synaptosomes is not significant. Protein carbonyl content is increased 42 and 37% in the Alzheimer's HIP and IPL regions, respectively, relative to AD cerebellum, whereas carbonyl content in control HIP and IPL is similar to that of control cerebellum. GS activity decreases an average of 27% in the AD brain; CK activity declines by 80%. The brain regional variation of these oxidation-sensitive biomarkers corresponds to established histopathological features of AD (senile plaque and neurofibrillary tangle densities) and is paralleled by an increase in immunoreactive microglia. These data indicate that senile plaque-dense regions of the AD brain may represent environments of elevated oxidative stress.  相似文献   
107.
108.
The ADAM (a disintegrin and metalloprotease) protein family uniquely exhibits both catalytic and adhesive properties. In the well-defined process of ectodomain shedding, ADAMs transform latent, cell-bound substrates into soluble, biologically active derivatives to regulate a spectrum of normal and pathological processes. In contrast, the integrin ligand properties of ADAMs are not fully understood. Emerging models posit that ADAM–integrin interactions regulate shedding activity by localizing or sequestering the ADAM sheddase. Interestingly, 8 of the 21 human ADAMs are predicted to be catalytically inactive. Unlike their catalytically active counterparts, integrin recognition of these “dead” enzymes has not been largely reported. The present study delineates the integrin ligand properties of a group of non-catalytic ADAMs. Here we report that human ADAM11, ADAM23, and ADAM29 selectively support integrin α4-dependent cell adhesion. This is the first demonstration that the disintegrin-like domains of multiple catalytically inactive ADAMs are ligands for a select subset of integrin receptors that also recognize catalytically active ADAMs.  相似文献   
109.
Plasmin cleaves rabbit serum apohemopexin (Mr = 60,000) at a single site producing a heme-binding domain (I, Mr = 35,000) and a second domain (II, Mr = 25,000) (W. T. Morgan and A. Smith (1984) J. Biol. Chem. 259, 12001-12005). The absorbance spectra of heme-domain I are indicative of a bis-histidyl coordination complex with the central heme iron atom. Chemical modification of the 5 histidine residues of apo-domain I with diethylpyrocarbonate abolished heme binding, supporting this assignment. Upon binding heme, domain I migrates more rapidly in sucrose gradients, and, in sedimentation velocity experiments, the s value of domain I increases from 3.17 +/- 0.04 to 3.71 +/- 0.09, a notably large increase which indicates that the domain becomes much more compact. This conformational change which plays a pivotal role in hemopexin function requires the bis-histidyl coordination with heme iron and leads to a tighter association between domain I and domain II shown by the co-migration of heme-domain I and domain II in sucrose gradients. In turn, the association of heme-domain I with domain II increases the thermal stability of the heme-domain I chromophore. Results of binding studies using mouse hepatoma cells and isolated domains indicate that domain I not only binds heme but also plays a vital part in the hemopexin-receptor interaction. The change in conformation of domain I upon heme binding and the association between domains I and II induced by heme are both notable determinants of the strength of the hemopexin-receptor interaction, but an intact "hinge region" between the domains is not necessary for receptor binding. The importance of both domains in bringing about the transport function of hemopexin is confirmed by the ability of three (two specific for domain I and one for domain II) of seven monoclonal antibodies raised against hemopexin to inhibit the hemopexin-receptor interaction.  相似文献   
110.
Summary An acid mine spoil in Southern Indiana was amended with lime (CaCO3) (0.0, 12.5, 25 and 39t/ha) and planted withElaegnus umbellata Thunb.,Alnus glutinosa Gaertn.,Robinia pseudoacacia L.,Robinia fertilis Ashe, Arnot,Myrica pensylvania Lois,Caragana arborescens L. andShepherdia argentea Nutt. Survival and soil data were collected periodically and plants were harvested 15 months after planting. Nodule and top dry weights were determined and acetylene reduction assays performed on the nodules.Addition of lime caused significant increases in pH, and 39 t/ha of lime were required to maintain a pH above 5.5. Survival of plant material was greatest at the highest lime addition, although response of individual species varied.Elaeagnus umbellata, R. pseudoacacia, R. fertilis Arnot, andA. glutinosa appeared more tolerant of the harsh conditions. OnlyC. arborescens showed a linear increase in top dry weight due to lime addition.Alnus glutinosa andS. argentea achieved statistically the same growth regardless of pH, andR. fertilis Arnot andE. umbellata did not increase in top dry weight above an addition of 25 t/ha.Robinia pseudoacacia achieved maximum top dry weight at 25 t/ha, whereasM. pensylvanica growth declined with increasing pH. Nodule dry weights increased with increasing pH; however,S. argentea showed greater nodule dry weights at lower lime levels. Acetylene reduction rates increased with lime addition.Elaegnus umbellata did not respond above 25 t/ha lime, whereasA. glutinosa did not show an increase until this point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号