首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   22篇
  189篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   7篇
  2014年   11篇
  2013年   7篇
  2012年   12篇
  2011年   14篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1983年   2篇
  1978年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
21.
This study is the first to use a metagenomics approach to characterize the phylogeny and functional capacity of the canine gastrointestinal microbiome. Six healthy adult dogs were used in a crossover design and fed a low-fiber control diet (K9C) or one containing 7.5% beet pulp (K9BP). Pooled fecal DNA samples from each treatment were subjected to 454 pyrosequencing, generating 503 280 (K9C) and 505 061 (K9BP) sequences. Dominant bacterial phyla included the Bacteroidetes/Chlorobi group and Firmicutes, both of which comprised ∼35% of all sequences, followed by Proteobacteria (13–15%) and Fusobacteria (7–8%). K9C had a greater percentage of Bacteroidetes, Fusobacteria and Proteobacteria, whereas K9BP had greater proportions of the Bacteroidetes/Chlorobi group and Firmicutes. Archaea were not altered by diet and represented ∼1% of all sequences. All archaea were members of Crenarchaeota and Euryarchaeota, with methanogens being the most abundant and diverse. Three fungi phylotypes were present in K9C, but none in K9BP. Less than 0.4% of sequences were of viral origin, with >99% of them associated with bacteriophages. Primary functional categories were not significantly affected by diet and were associated with carbohydrates; protein metabolism; DNA metabolism; cofactors, vitamins, prosthetic groups and pigments; amino acids and derivatives; cell wall and capsule; and virulence. Hierarchical clustering of several gastrointestinal metagenomes demonstrated phylogenetic and metabolic similarity between dogs, humans and mice. More research is required to provide deeper coverage of the canine microbiome, evaluate effects of age, genetics or environment on its composition and activity, and identify its role in gastrointestinal disease.  相似文献   
22.
23.
The structural properties of the linker peptide connecting the cellulose-binding module to the catalytic module in bimodular cellulases have been investigated by small-angle x-ray scattering. Since the linker and the cellulose-binding module are relatively small and cannot be readily detected separately, the conformation of the linker was studied by means of an artificial fusion protein, Cel6BA, in which an 88-residue linker connects the large catalytic modules of the cellulases Cel6A and Cel6B from Humicola insolens. Our data showed that Cel6BA is very elongated with a maximum dimension of 178 A, but could not be described by a single conformation. Modeling of a series of Cel6BA conformers with interdomain separations ranging between 10 A and 130 A showed that good Guinier and P(r) profile fits were obtained by a weighted average of the scattering curves of all the models where the linker follows a nonrandom distribution, with a preference for the more compact conformers. These structural properties are likely to be essential for the function of the linker as a molecular spring between the two functional modules. Small-angle x-ray scattering therefore provides a unique tool to quantitatively analyze the conformational disorder typical of proteins described as natively unfolded.  相似文献   
24.
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.  相似文献   
25.
Genome analyses highlight the different biological roles of cellulases   总被引:1,自引:0,他引:1  
Cellulolytic enzymes have been the subject of renewed interest owing to their potential role in the conversion of plant lignocellulose to sustainable biofuels. An analysis of ~1,500 complete bacterial genomes, presented here, reveals that ~40% of the genomes of sequenced bacteria encode at least one cellulase gene. Most of the bacteria that encode cellulases are soil and marine saprophytes, many of which encode a range of enzymes for cellulose hydrolysis and also for the breakdown of the other constituents of plant cell walls (hemicelluloses and pectins). Intriguingly, cellulases are present in organisms that are usually considered as non-saprophytic, such as Mycobacterium tuberculosis, Legionella pneumophila, Yersinia pestis and even Escherichia coli. We also discuss newly emerging roles of cellulases in such non-saprophytic organisms.  相似文献   
26.
An intracellular mannanase was identified from the thermoacidophile Alicyclobacillus acidocaldarius Tc-12-31. This enzyme is particularly interesting, because it shows no significant sequence similarity to any known glycoside hydrolase. Gene cloning, biochemical characterization, and structural studies of this novel mannanase are reported in this paper. The gene consists of 963 bp and encodes a 320-amino acid protein, AaManA. Based on its substrate specificity and product profile, AaManA is classified as an endo-beta-1,4-mannanase that is capable of transglycosylation. Kinetic analysis studies revealed that the enzyme required at least five subsites for efficient hydrolysis. The crystal structure at 1.9 angstroms resolution showed that AaManA adopted a (beta/alpha)8-barrel fold. Two catalytic residues were identified: Glu151 at the C terminus of beta-stand beta4 and Glu231 at the C terminus of beta7. Based on the structure of the enzyme and evidence of its transglycosylation activity, AaManA is placed in clan GH-A. Superpositioning of its structure with that of other clan GH-A enzymes revealed that six of the eight GH-A key residues were functionally conserved in AaManA, with the exceptions being residues Thr95 and Cys150. We propose a model of substrate binding in AaManA in which Glu282 interacts with the axial OH-C(2) in-2 subsites. Based on sequence comparisons, the enzyme was assigned to a new glycoside hydrolase family (GH113) that belongs to clan GH-A.  相似文献   
27.
28.
29.
The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries.  相似文献   
30.
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号