全文获取类型
收费全文 | 2997篇 |
免费 | 240篇 |
国内免费 | 1篇 |
专业分类
3238篇 |
出版年
2023年 | 18篇 |
2022年 | 28篇 |
2021年 | 58篇 |
2020年 | 35篇 |
2019年 | 40篇 |
2018年 | 63篇 |
2017年 | 49篇 |
2016年 | 75篇 |
2015年 | 175篇 |
2014年 | 175篇 |
2013年 | 220篇 |
2012年 | 272篇 |
2011年 | 246篇 |
2010年 | 150篇 |
2009年 | 123篇 |
2008年 | 198篇 |
2007年 | 179篇 |
2006年 | 178篇 |
2005年 | 151篇 |
2004年 | 142篇 |
2003年 | 113篇 |
2002年 | 116篇 |
2001年 | 33篇 |
2000年 | 31篇 |
1999年 | 34篇 |
1998年 | 42篇 |
1997年 | 21篇 |
1996年 | 18篇 |
1995年 | 19篇 |
1994年 | 27篇 |
1993年 | 20篇 |
1992年 | 19篇 |
1991年 | 16篇 |
1990年 | 11篇 |
1989年 | 22篇 |
1988年 | 6篇 |
1987年 | 19篇 |
1986年 | 10篇 |
1985年 | 6篇 |
1984年 | 6篇 |
1983年 | 8篇 |
1982年 | 8篇 |
1981年 | 6篇 |
1980年 | 7篇 |
1979年 | 6篇 |
1978年 | 4篇 |
1976年 | 5篇 |
1964年 | 3篇 |
1940年 | 2篇 |
1912年 | 2篇 |
排序方式: 共有3238条查询结果,搜索用时 14 毫秒
101.
Background
Stem cells reside in a plant's shoot meristem throughout its life and are main regulators of above-ground plant development. The stem cell maintenance depends on a feedback network between the CLAVATA and WUSCHEL genes. The CLAVATA3 peptide binds to the CLAVATA1 receptor leading to WUSCHEL inhibition. WUSCHEL, on the other hand, activates CLAVATA3 expression. Recent experiments suggest a second pathway where CLAVATA3 inhibits WUSCHEL via the CORYNE receptor pathway. An interesting question, central for understanding the receptor signaling, is why the clavata1-11 null mutant has a weaker phenotype compared with the clavata1-1 non-null mutant. It has been suggested that this relies on interference from the mutated CLAVATA1 acting on the CORYNE pathway. 相似文献102.
Leblond CS Heinrich J Delorme R Proepper C Betancur C Huguet G Konyukh M Chaste P Ey E Rastam M Anckarsäter H Nygren G Gillberg IC Melke J Toro R Regnault B Fauchereau F Mercati O Lemière N Skuse D Poot M Holt R Monaco AP Järvelä I Kantojärvi K Vanhala R Curran S Collier DA Bolton P Chiocchetti A Klauck SM Poustka F Freitag CM Waltes R Kopp M Duketis E Bacchelli E Minopoli F Ruta L Battaglia A Mazzone L Maestrini E Sequeira AF Oliveira B Vicente A Oliveira G Pinto D Scherer SW Zelenika D 《PLoS genetics》2012,8(2):e1002521
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. 相似文献
103.
Anders G. Sandström Henrik Almqvist Diogo Portugal-Nunes Dário Neves Gunnar Lidén Marie F. Gorwa-Grauslund 《Applied microbiology and biotechnology》2014,98(17):7299-7318
Carboxylic acids are important bulk chemicals that can be used as building blocks for the production of polymers, as acidulants, preservatives and flavour compound or as precursors for the synthesis of pharmaceuticals. Today, their production mainly takes place through catalytic processing of petroleum-based precursors. An appealing alternative would be to produce these compounds from renewable resources, using tailor-made microorganisms. Saccharomyces cerevisiae has already demonstrated its value for bioethanol production from renewable resources. In this review, we discuss Saccharomyces cerevisiae engineering potential, current strategies for carboxylic acid production as well as the specific challenges linked to the use of lignocellulosic biomass as carbon source. 相似文献
104.
Susan R. Kennedy Sophia Tsau Rosemary Gillespie Henrik Krehenwinkel 《Molecular ecology》2020,29(5):1001-1015
Stable core microbial communities have been described in numerous animal species and are commonly associated with fitness benefits for their hosts. Recent research, however, highlights examples of species whose microbiota are transient and environmentally derived. Here, we test the effect of diet on gut microbial community assembly in the spider Badumna longinqua. Using 16S rRNA gene amplicon sequencing combined with quantitative PCR, we analyzed diversity and abundance of the spider's gut microbes, and simultaneously characterized its prey communities using nuclear rRNA markers. We found a clear correlation between community similarity of the spider's insect prey and gut microbial DNA, suggesting that microbiome assembly is primarily diet‐driven. This assumption is supported by a feeding experiment, in which two types of prey—crickets and fruit flies—both substantially altered microbial diversity and community similarity between spiders, but did so in different ways. After cricket consumption, numerous cricket‐derived microbes appeared in the spider's gut, resulting in a rapid homogenization of microbial communities among spiders. In contrast, few prey‐associated bacteria were detected after consumption of fruit flies; instead, the microbial community was remodelled by environmentally sourced microbes, or abundance shifts of rare taxa in the spider's gut. The reshaping of the microbiota by both prey taxa mimicked a stable core microbiome in the spiders for several weeks post feeding. Our results suggest that the spider's gut microbiome undergoes pronounced temporal fluctuations, that its assembly is dictated by the consumed prey, and that different prey taxa may remodel the microbiota in drastically different ways. 相似文献
105.
Real-time metabolomic analysis of lactic acid bacteria as monitored by in vitro NMR and chemometrics
Parvaneh Ebrahimi Flemming Hofmann Larsen Henrik Max Jensen Finn Kvist Vogensen Søren Balling Engelsen 《Metabolomics : Official journal of the Metabolomic Society》2016,12(4):77
Introduction
Lactic acid bacteria (LAB) play an important role in the food industry as starter cultures to manufacture fermented food, and as probiotics. In recent years, there has been an increasing interest in using LAB cultures for biopreservation of food products. It is therefore of great interest to study the detailed metabolism of these bacteria.Objectives
This study aimed at developing an efficient analytical protocol for real-time in vitro NMR measurements of LAB fermentations, from sample preparation, over data acquisition and preprocessing, to the extraction of the kinetic metabolic profiles.Method
The developed analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 20174), two initial pH levels (pHi 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two batch fermentation replicates.Results
The design factors proved to be strongly significant and led to interesting biological information. The protocol allowed for detailed real-time kinetic analysis of 11 major metabolites involved in the glycolysis, pyruvate catabolism, amino acid catabolism and cell energy metabolism. New biological knowledge was obtained about the different patterns of glutamine and aspartic acid consumption by the two strains. It was observed that L. plantarum consumes more glutamine at low pH (pH 5.5) whereas the opposite applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume it higher at low pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at pH 6.5.Conclusion
The developed analytical protocol for real-time in vitro NMR measurements of bacterial metabolism allows a relatively easy investigation of different fermentation factors such as new strains, new substrates, cohabitations, temperature, and pH and has a great potential in biopreservation studies to discover new efficient bioprotective cultures.106.
Tétaud C Falguières T Carlier K Lécluse Y Garibal J Coulaud D Busson P Steffensen R Clausen H Johannes L Wiels J 《The Journal of biological chemistry》2003,278(46):45200-45208
Globotriasosylceramide (Gb3), a neutral glycosphingolipid, is the B-cell differentiation antigen CD77 and acts as the receptor for most Shiga toxins, including verotoxin-1 (VT-1). We have shown that both anti-Gb3/CD77 mAb and VT-1 induce apoptosis in Burkitt's lymphoma cells. We compared the apoptotic pathways induced by these two molecules by selecting cell lines sensitive to only one of these inducers or to both. In all these cell lines (including the apoptosis-resistant line), VT-1 was transported to the endoplasmic reticulum and inhibited protein synthesis similarly, suggesting that VT-1-induced apoptosis is dissociated from these processes. VT-1 triggered a caspase- and mitochondria-dependent pathway (rapid activation of caspases 8 and 3 associated with a loss of mitochondrial membrane potential (Deltapsim) and the release of cytochrome c from mitochondria). In contrast, the anti-Gb3/CD77 mAb-induced pathway was caspase-independent and only involved partial depolarization of mitochondria. Antioxidant compounds had only marginal effects on VT-1-induced apoptosis but strongly protected cells from anti-Gb3/CD77 mAb-induced apoptosis. VT-1- and anti-Gb3/CD77 mAb-treated cells displayed very different features on electron microscopy. These results clearly indicate that the binding of different ligands to Gb3/CD77 triggers completely different apoptotic pathways. 相似文献
107.
Efficient enrichment of staphylococcal cells displaying specific heterologous affinity ligands on their cell surfaces was demonstrated by using fluorescence-activated cell sorting. Using bacterial surface display of peptide or protein libraries for the purpose of combinatorial protein engineering has previously been investigated by using gram-negative bacteria. Here, the potential for using a gram-positive bacterium was evaluated by employing the well-established surface expression system for Staphylococcus carnosus. Staphylococcus aureus protein A domains with binding specificity to immunoglobulin G or engineered specificity for the G protein of human respiratory syncytial virus were expressed as surface display on S. carnosus cells. The surface accessibility and retained binding specificity of expressed proteins were demonstrated in whole-cell enzyme and flow cytometry assays. Also, affibody-expressing target cells could be sorted essentially quantitatively from a moderate excess of background cells in a single step by using a high-stringency sorting mode. Furthermore, in a simulated library selection experiment, a more-than-25,000-fold enrichment of target cells could be achieved through only two rounds of cell sorting and regrowth. The results obtained indicate that staphylococcal surface display of affibody libraries combined with fluoresence-activated cell sorting might indeed constitute an attractive alternative to existing technology platforms for affinity-based selections. 相似文献
108.
Majid Haddad Momeni Christina M. Payne Henrik Hansson Nils Egil Mikkelsen Jesper Svedberg ?ke Engstr?m Mats Sandgren Gregg T. Beckham Jerry St?hlberg 《The Journal of biological chemistry》2013,288(8):5861-5872
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the −7 to −4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases. 相似文献
109.
Szymon ??ski Henrik Lindén Tom Tetzlaff Klas H. Pettersen Gaute T. Einevoll 《PLoS computational biology》2013,9(7)
Despite its century-old use, the interpretation of local field potentials (LFPs), the low-frequency part of electrical signals recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents following synaptic input, and obvious questions regarding the ‘locality’ of the LFP are: What is the size of the signal-generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal? Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For uncorrelated input only the first factor is relevant, and here a modest reduction (<50%) in the spatial reach is observed for higher frequencies (>100 Hz) compared to the near-DC () value of about . Much larger frequency-dependent effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-frequency () LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency LFP components have larger spatial reach and extend further outside the active population than high-frequency components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of neurons in the population. Our numerical findings are backed up by an intuitive simplified model for the generation of population LFP. 相似文献
110.
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCFCdc4 and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCFCdc4 ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCFCdc4 and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCFCdc4 is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK. 相似文献