首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3016篇
  免费   320篇
  3336篇
  2022年   22篇
  2021年   34篇
  2020年   20篇
  2019年   24篇
  2018年   35篇
  2017年   38篇
  2016年   67篇
  2015年   96篇
  2014年   114篇
  2013年   159篇
  2012年   168篇
  2011年   185篇
  2010年   125篇
  2009年   102篇
  2008年   149篇
  2007年   156篇
  2006年   128篇
  2005年   123篇
  2004年   121篇
  2003年   132篇
  2002年   108篇
  2001年   88篇
  2000年   108篇
  1999年   93篇
  1998年   33篇
  1997年   49篇
  1996年   37篇
  1995年   38篇
  1994年   39篇
  1993年   42篇
  1992年   62篇
  1991年   61篇
  1990年   60篇
  1989年   47篇
  1988年   32篇
  1987年   36篇
  1986年   49篇
  1985年   34篇
  1984年   18篇
  1983年   20篇
  1982年   23篇
  1981年   19篇
  1979年   22篇
  1978年   19篇
  1976年   20篇
  1975年   16篇
  1974年   13篇
  1973年   16篇
  1972年   23篇
  1970年   15篇
排序方式: 共有3336条查询结果,搜索用时 15 毫秒
51.
Genetic and environmental correlations among five serum-lipid measures were examined in the Swedish Adoption/Twin Study of Aging. The sample included 302 twin pairs; 146 of these twin pairs were separated at an early age and were reared apart. The lipid measures examined include total cholesterol, HDL-cholesterol, triglycerides, and apolipoproteins A-I and B. Genetic and environmental correlations were evaluated for two different age groups, formed by dividing the sample at the median. The younger group included individuals 41.8-65.4 years of age at the midpoint of testing, although only 24 individuals were < 50 years of age. The older group included all those > 65.4 years of age, up to age 87 years of age. Substantial genetic correlations were found within each age group, although there is no evidence for a single genetic factor common to all five lipids. The comparison of twins reared together with twins reared apart allowed estimation of the effects of shared rearing environment; however, shared rearing environment only appears to be a significant mediator of the phenotypic correlation between apolipoprotein B and cholesterol in the older group. Examination of the genetic and environmental covariances suggests that the relative contributions of genetic factors are lower in the older group. Nonshared environmental factors are relatively more important mediators of phenotypic correlations among the serum lipids in individuals > 65.4 years of age than they are for the younger group. Sex differences in the mediation of these serum lipids were not as clear.  相似文献   
52.
The salicylidene acylhydrazide (SA) compounds have exhibited promising microbicidal properties. Previous reports have shown the SA compounds, using cell cultures, to exhibit activity against Chlamydia trachomatis, herpes simplex virus and HIV-1. In addition, using an animal model of a vaginal infection the SA compound INP0341, when dissolved in a liquid, was able to significantly protect mice from a vaginal infection with C. trachomatis. To expand upon this finding, in this report INP0341 was formulated as a vaginal gel, suitable for use in humans. Gelling agents (polymers) with inherent antimicrobial properties were chosen to maximize the total antimicrobial effect of the gel. In vitro formulation work generated a gel with suitable rheology and sustained drug release. A formulation containing 1 mM INP0341, 1.6 wt% Cremophor ELP (solubility enhancer) and 1.5 wt% poly(acrylic acid) (gelling and antimicrobial agent), was chosen for studies of efficacy and toxicity using a mouse model of a vaginal infection. The gel formulation was able to attenuate a vaginal challenge with C. trachomatis, serovar D. Formulations with and without INP0341 afforded protection, but the inclusion of INP0341 increased the protection. Mouse vaginal tissue treated with the formulation showed no indication of gel toxicity. The lack of toxicity was confirmed by in vitro assays using EpiVaginal tissues, which showed that a 24 h exposure to the gel formulation did not decrease the cell viability or the barrier function of the tissue. Therefore, the gel formulation described here appears to be a promising vaginal microbicide to prevent a C. trachomatis infection with the potential to be expanded to other sexually transmitted diseases.  相似文献   
53.
Neurotransmitter transporters play an important role in termination of synaptic transmission by mediating reuptake of neurotransmitter, but the molecular processes behind translocation are still unclear. The crystal structures of the bacterial homologue, LeuT, provided valuable insight into the structural and dynamic requirements for substrate transport. These structures support the existence of gating domains controlling access to a central binding site. On the extracellular side, access is controlled by the “thin gate” formed by an interaction between Arg-30 and Asp-404. In the human dopamine transporter (DAT), the corresponding residues are Arg-85 and Asp-476. Here, we present results supporting the existence of a similar interaction in DAT. The DAT R85D mutant has a complete loss of function, but the additional insertion of an arginine in opposite position (R85D/D476R), causing a charge reversal, results in a rescue of binding sites for the cocaine analogue [3H]CFT. Also, the coordination of Zn2+ between introduced histidines (R85H/D476H) caused a ∼2.5-fold increase in [3H]CFT binding (Bmax). Importantly, Zn2+ also inhibited [3H]dopamine transport in R85H/D476H, suggesting that a dynamic interaction is required for the transport process. Furthermore, cysteine-reactive chemistry shows that mutation of the gating residues causes a higher proportion of transporters to reside in the outward facing conformation. Finally, we show that charge reversal of the corresponding residues (R104E/E493R) in the serotonin transporter also rescues [3H](S)-citalopram binding, suggesting a conserved feature. Taken together, these data suggest that the extracellular thin gate is present in monoamine transporters and that a dynamic interaction is required for substrate transport.  相似文献   
54.
Comparative molecular modeling has been used to generate several possible structures for the G-domain of chloroplast elongation factor Tu (EF-Tu(chl)) based on the crystallographic data of the homologous E. coli protein. EF-Tu(chl) contains a 10 amino acid insertion not present in the E. coli protein and this region has been modeled based on its predicted secondary structure. The insertion appears to lie on the surface of the protein. Its orientation could not be determined unequivocally but several likely structures for the nucleotide binding domain of EF-Tu(chl) have been developed. The effects of the presence of water in the Mg2+ coordination sphere and of the protonation state of the GDP ligand on the conformation of the guanine nucleotide binding site have been examined. Relative binding constants of several guanine nucleotide analogs for EF-Tu(chl) have been obtained. The interactions between EF-Tu(chl) and GDP predicted to be important by the models that have been developed are discussed in relation to the nucleotide binding properties of this factor and to the interactions proposed to be important in the binding of guanine nucleotides to related proteins.  相似文献   
55.
The formation of a microbial biofilm on glass surfaces arranged in lamellar piles parallel with circulating sea water (3 cm·sec–1) was studied. The increase in dry weight, protein content, nucleotide content (ATP, ADP), and diatoms was followed over a period of 62 days. Dry weight and protein were estimates of the total biofilm development, whereas the nucleotide measurements revealed the viability of the biofilm and reflected the dynamics in the community structure.  相似文献   
56.
BackgroundElucidating the neurobiological effects of sleep and waking remains an important goal of the neurosciences. Recently, animal studies indicated that sleep is important for cell membrane and myelin maintenance in the brain and that these structures are particularly susceptible to insufficient sleep. Here, we tested the hypothesis that a day of waking and sleep deprivation would be associated with changes in diffusion tensor imaging (DTI) indices of white matter microstructure sensitive to axonal membrane and myelin alterations.MethodsTwenty-one healthy adult males underwent DTI in the morning [7:30AM; time point (TP)1], after 14 hours of waking (TP2), and then after another 9 hours of waking (TP3). Whole brain voxel-wise analysis was performed with tract based spatial statistics.ResultsA day of waking was associated with widespread increases in white matter fractional anisotropy, which were mainly driven by radial diffusivity reductions, and sleep deprivation was associated with widespread fractional anisotropy decreases, which were mainly explained by reductions in axial diffusivity. In addition, larger decreases in axial diffusivity after sleep deprivation were associated with greater sleepiness. All DTI changes remained significant after adjusting for hydration measures.ConclusionsThis is the first DTI study of sleep deprivation in humans. Although previous studies have observed localized changes in DTI indices of cerebral microstructure over the course of a few hours, further studies are needed to confirm widespread DTI changes within hours of waking and to clarify whether such changes in white matter microstructure serve as neurobiological substrates of sleepiness.  相似文献   
57.
58.
Only a few Armadillo (ARM) repeat proteins have been characterized in plants where they appear to have diverse functions, including the regulation of defence responses. In this study, the identification, cloning and characterization of a gene, encoding an ARM repeat protein (GhARM), is described. GhARM exists as multiple copies in cotton, with an 1713 bp ORF encoding 570 amino acids. The predicted protein contains three consecutive ARM repeats within an Armadillo-type fold, with no other distinguishing domains. Sequence alignments and phylogenetic analysis revealed that GhARM has a high homology with other ARM proteins in plants. The predicted three dimensional model of GhARM displayed a characteristic right-handed superhelical twist. In silico analysis of the promoter sequence revealed that it contains several defence- and hormone-responsive cis-regulatory elements. Expression of GhARM was significantly down-regulated in response to treatment with a V. dahliae elicitor suggesting that GhARM may function as a negative-regulator of cotton defence signalling against V. dahliae. To date, GhARM is the only ARM repeat gene that has been completely sequenced and characterized in cotton.  相似文献   
59.
Macrophage inhibitory cytokine‐1 (MIC‐1/GDF15) is a member of the TGF‐b superfamily, previously studied in cancer and inflammation. In addition to regulating body weight, MIC‐1/GDF15 may be used to predict mortality and/or disease course in cancer, cardiovascular disease (CVD), chronic renal and heart failure, as well as pulmonary embolism. These data suggested that MIC‐1/GDF15 may be a marker of all‐cause mortality. To determine whether serum MIC‐1/GDF15 estimation is a predictor of all‐cause mortality, we examined a cohort of 876 male subjects aged 35–80 years, selected from the Swedish Population Registry, and followed them for overall mortality. Serum MIC‐1/GDF15 levels were determined for all subjects from samples taken at study entry. A second (independent) cohort of 324 same‐sex twins (69% female) from the Swedish Twin Registry was similarly examined. All the twins had telomere length measured and 183 had serum levels of interleukin 6 (IL‐6) and C‐reactive protein (CRP) available. Patients were followed for up to 14 years and had cause‐specific and all‐cause mortality determined. Serum MIC‐1/GDF15 levels predicted mortality in the all‐male cohort with an adjusted odds ratio (OR) of death of 3.38 (95%CI 1.38–8.26). This finding was validated in the twin cohort. Serum MIC‐1/GDF15 remained an independent predictor of mortality when further adjusted for telomere length, IL‐6 and CRP. Additionally, serum MIC‐1/GDF15 levels were directly correlated with survival time independently of genetic background. Serum MIC‐1/GDF15 is a novel predictor of all‐cause mortality.  相似文献   
60.
brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele.Plant cell walls constitute a vast reserve of fixed carbon. Cellulose and lignin are the first and second most abundant polymers on the planet, respectively (Jung and Ni, 1998). The world community has started to look to biomass as substrates for plant-based biologically sustainable fuels, which would mitigate carbon dioxide emission and reduce petroleum dependence (Sarath et al., 2008; Schmer et al., 2008). In the current generation of biofuels, ethanol is being synthesized via the fermentation of grain starch or sugarcane juice. For the next generation of biofuels, research is being directed toward the conversion of lignocellulosic biomass into biofuels (Chang, 2007). As bioenergy technologies progress, the conversion of biomass to biofuels could involve a range of chemical, biochemical, and fermentation processes to produce biofuels; alternate biofuels, such as butanol or dimethylfuran, are also on the horizon (Ezeji et al., 2007; Roman-Leshkov et al., 2007). Most liquid biofuel production processes will likely rely on the conversion of the cell wall polysaccharides cellulose and hemicellulose into monomeric sugars.Plant cell walls consist of a complex polysaccharide moiety composed of cellulose microfibrils, composed of β-1,4-linked Glc polymers (Carpita and McCann, 2000). Connecting the cellulose microfibrils to each other is a hemicellulose network, whose structure and composition are species dependent, and which is mainly composed of glucuronoarabinoxylans in grasses (Carpita and McCann, 2000). Lignin, a nonlinear heterogeneous polymer derived from aromatic precursors, cross-links these polysaccharides, rigidifying and reinforcing the cell wall structure (Carpita and McCann, 2000). The addition of lignin polymers to the polysaccharide matrix creates a barrier that is chemically and microbially resistant.Lignin can block the liberation of sugars from the cell wall polysaccharide moieties, release compounds that can inhibit microbes used for fermenting sugars to fuels, and adhere to hydrolytic enzymes. Understanding lignin synthesis, structure, and function to increase cell wall digestibility has long been a goal for forage improvement and paper processing (Mackay et al., 1997; Jung and Ni, 1998). Recently, manipulating lignin has also become an important target for bioenergy feedstock improvement (Chen and Dixon, 2007; Li et al., 2008).Lignin is derived from the phenylpropanoid pathway and contains primarily three types of phenolic subunits: p-hydroxyphenyl, guaiacyl, and syringyl units (Dixon et al., 2001). The phenolic aldehyde precursors are reduced into their corresponding alcohols (monolignols) and subsequently transported to the cell wall (Fig. 1), where laccases and peroxidases catalyze lignin polymerization through the formation of monolignol radicals (Boerjan et al., 2003). Therefore, most research efforts to manipulate lignin have focused on biosynthesis of the monolignols. Most of the enzymes involved in monolignol synthesis have been cloned and characterized in Arabidopsis (Arabidopsis thaliana) and other dicot species, using both mutagenic and transgenic approaches to study the impact of these gene products on dicot cell walls (Anterola and Lewis, 2002). However, there are significant differences in the architecture, polysaccharide composition, and phenylpropanoid composition of grass cell walls compared with those of dicots (Carpita and McCann, 2000; Vogel and Jung, 2001). For example, grasses contain significant amounts of p-coumaric acid and ferulic acid that are cross-linked to cell wall polysaccharides through ester and ether linkages in addition to their presence in lignin (Grabber et al., 1991; Boerjan et al., 2003). Because many of the proposed dedicated bioenergy crops are grasses, there is a need to identify and understand the function of the gene products involved in lignin biosynthesis in these species (Vermerris et al., 2007; Li et al., 2008; Sarath et al., 2008).Open in a separate windowFigure 1.The CAD enzyme and its role in the monolignol biosynthetic pathway. A, CAD catalyzes the conversion of cinnamyl aldehydes to alcohols using NADPH as its cofactor. p-Coumaryl aldehyde and alcohol, R1 and R2 = H; caffeoyl aldehyde and alcohol, R1 and R2 = OH; coniferyl aldehyde and alcohol, R1 = H and R2 = OCH3; sinapyl aldehyde and alcohol, R1 and R2 = OCH3. B, A simplified model of the lignin biosynthetic pathway where CAD catalyzes the final step in monolignol biosynthesis.The brown midrib phenotype has been useful for identifying mutants affecting lignin synthesis in grasses because it is a visible phenotype. Spontaneous brown midrib mutants were first discovered in maize (Zea mays; Jorgenson, 1931) and were subsequently generated in sorghum (Sorghum bicolor) using diethyl sulfate mutagenesis (Porter et al., 1978). Brown midrib mutants in maize, sorghum, and pearl millet (Pennisetum glaucum) have increased forage digestibility for livestock (Cherney et al., 1990; Akin et al., 1993; Jung et al., 1998; Oliver et al., 2004). In maize and sorghum, there are at least four brown midrib loci in their respective genomes (Jorgenson, 1931; Porter et al., 1978; Gupta, 1995). The genes encoding bm3 in maize and bmr12 in sorghum are the only loci cloned to date, and both encode highly similar caffeic acid O-methyl transferases (Vignols et al., 1995; Bout and Vermerris, 2003). A second brown midrib locus associated with reduced cinnamyl alcohol dehydrogenase (CAD) activity has been identified both in maize (bm1; Halpin et al., 1998) and sorghum (bmr6; Bucholtz et al., 1980; Pillonel et al., 1991). CAD is a member of the alcohol dehydrogenase superfamily of proteins that catalyzes the conversion of the hydroxycinnamoyl aldehydes into alcohols prior to their incorporation into lignin polymers (Fig. 1). Reduced CAD activity results in increased digestibility on dry weight basis, altered cell wall architecture, reduced lignin level, and the incorporation of phenolic aldehydes into lignin in sorghum and maize (Pillonel et al., 1991; Provan et al., 1997; Halpin et al., 1998; Marita et al., 2003; Shi et al., 2006; Palmer et al., 2008). The reduced CAD activity in bm1 has been genetically mapped to a region of the maize genome that contained a CAD gene, ZmCAD2 (Halpin et al., 1998), but a mutation was not identified. However, it has recently been shown that bm1 down-regulated the expression of several lignin biosynthetic genes, suggesting its gene product may be a regulatory protein (Shi et al., 2006; Guillaumie et al., 2007).To identify the mutation responsible for the bmr6 phenotype and to characterize how bmr6 impacts the lignin biosynthetic pathway, a candidate gene approach was taken. Here, we describe the cloning and characterization of Bmr6 and a related protein, SbCAD4. The identification and characterization of Bmr6 has revealed the major monolignol CAD protein in the grasses, which is likely to aid the development of new strategies to increase conversion of sorghum and other grass feedstocks to biofuels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号