首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1778篇
  免费   170篇
  国内免费   2篇
  2022年   23篇
  2021年   29篇
  2020年   15篇
  2019年   17篇
  2018年   40篇
  2017年   31篇
  2016年   38篇
  2015年   69篇
  2014年   83篇
  2013年   111篇
  2012年   146篇
  2011年   114篇
  2010年   64篇
  2009年   69篇
  2008年   96篇
  2007年   99篇
  2006年   87篇
  2005年   77篇
  2004年   74篇
  2003年   77篇
  2002年   79篇
  2001年   24篇
  1999年   19篇
  1998年   20篇
  1997年   21篇
  1996年   21篇
  1995年   11篇
  1994年   12篇
  1993年   16篇
  1992年   18篇
  1991年   16篇
  1990年   11篇
  1989年   15篇
  1988年   15篇
  1987年   16篇
  1986年   15篇
  1985年   28篇
  1984年   14篇
  1983年   10篇
  1982年   13篇
  1981年   16篇
  1979年   14篇
  1978年   13篇
  1977年   13篇
  1975年   14篇
  1973年   14篇
  1972年   12篇
  1971年   9篇
  1970年   9篇
  1969年   9篇
排序方式: 共有1950条查询结果,搜索用时 187 毫秒
71.
72.

Background

Studies suggest that neighborhood ethnic diversity may be important when it comes to understanding ethnic inequalities in mental health. The primary aim of this study was to investigate whether neighborhood ethnic diversity moderated the association between the ethnic minority status and child behavioral and emotional problems.

Methods

We included 3076 preschoolers participating in the Generation R Study, a birth cohort study in Rotterdam, the Netherlands. At child age 3-years, parents completed the Child Behavior Checklist (CBCL/1,5-5). Individual-level data, assessed with questionnaires, was combined with neighborhood-level data. Multi-level logistic regression models predicted the Odds Ratios for the CBCL total problems score as a function of maternal ethnic background and neighborhood ethnic diversity, computed with the Racial Diversity Index and categorized into tertiles. Interaction on the additive scale was assessed using Relative Access Risk due to Interaction.

Results

Being from an ethnic minority was associated with child behavioral and emotional problems in unadjusted (OR 2.76, 95% CI 1.88–4.04) and adjusted models (OR 2.64, 95% CI 1.79–3.92). Residing in a high diversity neighborhood was associated with child behavioral and emotional problems in unadjusted (OR 2.03, 95% CI 1.13–3.64) but not in adjusted models (OR 0.89, 95% CI 0.51–1.57). When stratifying by the three levels of neighborhood ethnic diversity, ethnic inequalities in behavioral and emotional problems were greatest in low diversity neighborhoods (OR 5.24, 95%CI 2.47–11.14), smaller in high diversity neighborhoods (OR 3.15, 95% CI 1.66–5.99) and smallest in medium diversity neighborhoods (OR 1.59, 95% CI 0.90–2.82). Tests for interaction (when comparing medium to low diversity neighborhoods) trended towards negative on both the additive and multiplicative scale for the maternal-report (RERI: −3.22, 95% CI −0.70–0.59; Ratio of ORs: 0.30, 95% CI 0.12–0.76).

Conclusion

This study suggests that ethnic inequalities in child behavioral and emotional problems may be greatest in ethnically homogeneous neighborhoods.  相似文献   
73.
The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface 1. Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential 2. In the last decades, several surgical treatment options have emerged and have already been clinically established 3-6.Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface 3,7,8. Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects.New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation 9,10. However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral bone 11.The sandwich-technique combines bone grafting with current approaches in Tissue Engineering 5,6. This combination seems to be able to overcome the limitations seen in osteochondral grafts alone. After autologous bone grafting to the subchondral defect area, a membrane seeded with autologous chondrocytes is sutured above and facilitates to match the topology of the graft with the injured site. Of course, the previous bone reconstruction needs additional surgical time and often even an additional surgery. Moreover, to date, long-term data is missing 12.Tissue Engineering without additional bone grafting aims to restore the complex structure and properties of native articular cartilage by chondrogenic and osteogenic potential of the transplanted cells. However, again, it is usually only the cartilage tissue that is more or less regenerated. Additional osteochondral damage needs a specific further treatment. In order to achieve a regeneration of the multilayered structure of osteochondral defects, three-dimensional tissue engineered products seeded with autologous/allogeneic cells might provide a good regeneration capacity 11.Beside autologous chondrocytes, mesenchymal stem cells (MSC) seem to be an attractive alternative for the development of a full-thickness cartilage tissue. In numerous preclinical in vitro and in vivo studies, mesenchymal stem cells have displayed excellent tissue regeneration potential 13,14. The important advantage of mesenchymal stem cells especially for the treatment of osteochondral defects is that they have the capacity to differentiate in osteocytes as well as chondrocytes. Therefore, they potentially allow a multilayered regeneration of the defect.In recent years, several scaffolds with osteochondral regenerative potential have therefore been developed and evaluated with promising preliminary results 1,15-18. Furthermore, fibrin glue as a cell carrier became one of the preferred techniques in experimental cartilage repair and has already successfully been used in several animal studies 19-21 and even first human trials 22.The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit''s bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit''s knee joint will be described.  相似文献   
74.
The in‐depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC‐MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in‐gel IEF, prior to RP‐HPLC‐MS/MS. Our results show that applying peptide IEF can significantly increase the number of proteins identified from PAGE subfractionation. This method delivers deeper proteome coverage and provides a large degree of flexibility in experimentally approaching highly complex mixtures by still relying on protein separation according to molecular weight in the first dimension.  相似文献   
75.
In a recent study we investigated the complex mechanisms regulating the pollen release via thigmonastic stamen movement found exclusively in Loasaceae subfamily Loasoideae. We demonstrated that stamen movement is modulated by abiotic (light and temperature) as well as biotic stimuli (pollinator availability and visitation frequency). This is explained as a mechanism to adjust the rate of stamen movement and thus pollen dispensation to different environmental conditions in order to optimize pollen transfer. Stamen movement is rapid and thus a near-immediate response to pollinator visits. However, Loasaceae flowers also show a response to biotic stimuli on a longer time scale, by adjusting the duration of both the staminate and the carpellate phase of the anthesis. We here present two additional data sets on species not previously studied, underscoring the shortening of the staminate phase in the presence of pollinator visits vs. their absence and the shortening of the carpellate phase after pollination. Overall, the plant shows not only a rapid but an “intelligent” reaction to its environment in adjusting anthesis and pollen presentation to a range of factors. The physiological and morphological bases of the stamen movement are poorly understood. Our previous study showed that there is no direct spatial relationship between the place of stimulation in the flower and the stamen bundle activated. We here further show the morphological basis for stamen movement from a reflexed into an erect position: Only the basal part of the filament curves around the receptacle, while the upper part of the filament retains its shape. We hypothesize that the stimulus is transmitted over the entire receptacle and the place of reaction is determined by stamen maturity, not the location of the stimulus.  相似文献   
76.
Twin studies have estimated the heritability of longevity to be approximately 20–30 %. Genome-wide association studies (GWAS) have revealed a large number of determinants of morbidity, but so far, no new polymorphisms have been discovered to be associated with longevity per se in GWAS. We aim to determine whether the genetic architecture of mortality can be explained by single nucleotide polymorphisms (SNPs) associated with common traits and diseases related to mortality. By extensive quality control of published GWAS we created a genetic score from 707 common SNPs associated with 125 diseases or risk factors related with overall mortality. We prospectively studied the association of the genetic score with: (1) time-to-death; (2) incidence of the first of nine major diseases (coronary heart disease, stroke, heart failure, diabetes, dementia, lung, breast, colon and prostate cancers) in two population-based cohorts of Dutch and Swedish individuals (N = 15,039; age range 47–99 years). During a median follow-up of 6.3 years (max 22.2 years), we observed 4,318 deaths and 2,132 incident disease events. The genetic score was significantly associated with time-to-death [hazard ratio (HR) per added risk allele = 1.003, P value = 0.006; HR 4th vs. 1st quartile = 1.103]. The association between the genetic score and incidence of major diseases was stronger (HR per added risk allele = 1.004, P value = 0.002; HR 4th vs. 1st quartile = 1.160). Associations were stronger for individuals dying at older ages. Our findings are compatible with the view of mortality as a complex and highly polygenetic trait, not easily explainable by common genetic variants related to diseases and physiological traits.  相似文献   
77.
Synthesis and properties of fatty acid starch esters   总被引:3,自引:0,他引:3  
Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS > 2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2 h. FASEs C6–C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, 1H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified – contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6–C18), formation of concentrated solutions (10 wt%) is feasible.  相似文献   
78.
Recruitment of the growth factor receptor-bound protein 2 (Grb2) by the plasma membrane-associated adapter protein downstream of kinase 3 (Dok-3) attenuates signals transduced by the B cell antigen receptor (BCR). Here we describe molecular details of Dok-3/Grb2 signal integration and function, showing that the Lyn-dependent activation of the BCR transducer kinase Syk is attenuated by Dok-3/Grb2 in a site-specific manner. This process is associated with the SH3 domain-dependent translocation of Dok-3/Grb2 complexes into BCR microsignalosomes and augmented phosphorylation of the inhibitory Lyn target SH2 domain-containing inositol 5′ phosphatase. Hence, our findings imply that Dok-3/Grb2 modulates the balance between activatory and inhibitory Lyn functions with the aim to adjust BCR signaling efficiency.  相似文献   
79.
Protein trans-splicing by split inteins holds great potential for the chemical modification and semisynthesis of proteins. However, the structural requirements of the extein sequences immediately flanking the intein are only poorly understood. This knowledge is of particular importance for protein labeling, when synthetic moieties are to be attached to the protein of interest as seamlessly as possible. Using the semisynthetic Ssp DnaB intein both in form of its wild-type sequence and its evolved M86 mutant, we systematically varied the sequence upstream of the short synthetic IntN fragment using both proteinogenic amino acids and unnatural building blocks. We could show for the wild-type variant that the native N-extein sequence could be reduced to the glycine residue at the (?1) position directly flanking the intein without significant loss of activity. The glycine at this position is strongly preferred over building blocks containing a phenyl group or extended alkyl chain adjacent to the scissile amide bond of the N-terminal splice junction. Despite their negative effects on the splicing yields, these unnatural substrates were well processed in the N–S acyl shift to form the respective thioesters and did not result in an increased decoupling of the asparagine cyclization step at the C-terminal splicing junction. Therefore, the transesterification step appeared to be the bottleneck of the protein splicing pathway. The fluorophore 7-hydroxycoumarinyl-4-acetic acid as a minimal N-extein was efficiently ligated to the model protein, in particular with the M86 mutant, probably because of its higher resemblance to glycine with an aliphatic c-α carbon atom at the (?1) position. This finding indicates a way for the virtually traceless labeling of proteins without inserting extra flanking residues. Due to its overall higher activity, the M86 mutant appears most promising for many protein labeling and chemical modification schemes using the split intein approach.  相似文献   
80.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号