首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   12篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2005年   7篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1968年   1篇
  1967年   1篇
  1958年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
We have studied the importance of N-terminal processing for normal actin function using the Drosophila Act88F actin gene transcribed and translated in vitro. Despite having different charges as determined by two-dimensional (2D) gel electrophoresis, Act88F expressed in vivo and in vitro in rabbit reticulocyte lysate bind to DNase I with equal affinity and are able to copolymerise with bulk rabbit actin equally well. Using peptide mapping and thin-layer electrophoresis we have shown that bestatin [( 3-amino-2-hydroxy-4-phenyl-butanoyl]-L-leucine), an inhibitor of aminopeptidases, can inhibit actin N-terminal processing in rabbit reticulocyte lysate. Although processed and unprocessed actins translated in vitro are able to bind to DNase I equally well, unprocessed actins are less able to copolymerise with bulk actins. This effect is more pronounced when bulk rabbit actin is used but is still seen with bulk Lethocerus actin. Also, the unprocessed actins reduce the polymerisation of the processed actin translated in vitro with the bulk rabbit actin. This suggests that individual actins do interact, even in non-polymerising conditions. The reduced ability of unprocessed actin to polymerise shows that correct post-translational modification of the N terminus is required for normal actin function.  相似文献   
12.
ABSTRACT.   Cochabamba Mountain-Finches ( Compsospiza garleppi ) are endangered residents of semihumid shrublands in the high Andes, with a range restricted to a few high valleys surrounding the city of Cochabamba, Bolivia. We examined the breeding behavior, feeding ecology, habitat requirements, vocalizations, and conservation status of Cochabamba Mountain-Finches from November 2006 to April 2007. We observed 10 nests of eight pairs, with nests found in a variety of small woody shrubs as well as bunchgrass and a ground bromeliad. Clutches ( N = 2) consisted of one or two eggs, and all broods ( N = 4) included one or two young. Our observations suggest that Cochabamba Mountain-Finches are not Polylepis specialists as previously thought, and use a diversity of native shrubs often associated with Polylepis woodlands for foraging and nesting. Pairs inhabited modified habitats where native vegetation and woodland edge persisted, but were not observed in closed canopy woodlands. Cochabamba Mountain-Finches frequently foraged on the edges of potato fields in a rural community and, at least occasionally, consumed parts of unearthed tubers. We recorded two previously unknown song types and three types of calls, and one song type was found to be useful for playback surveys. We recommend that future research and conservation actions include thorough surveys using playback to determine population sizes, and that habitat restoration projects focus on maintaining a diversity of native shrubs rather than only Polylepis trees.  相似文献   
13.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
14.
15.
Kinesin-13, an end depolymerizer of cytoplasmic and spindle microtubules, also affects the length of cilia. However, in different models, depletion of kinesin-13 either lengthens or shortens cilia, and therefore the exact function of kinesin-13 in cilia remains unclear. We generated null mutations of all kinesin-13 paralogues in the ciliate Tetrahymena. One of the paralogues, Kin13Ap, localizes to the nuclei and is essential for nuclear divisions. The remaining two paralogues, Kin13Bp and Kin13Cp, localize to the cell body and inside assembling cilia. Loss of both Kin13Bp and Kin13Cp resulted in slow cell multiplication and motility, overgrowth of cell body microtubules, shortening of cilia, and synthetic lethality with either paclitaxel or a deletion of MEC-17/ATAT1, the α-tubulin acetyltransferase. The mutant cilia assembled slowly and contained abnormal tubulin, characterized by altered posttranslational modifications and hypersensitivity to paclitaxel. The mutant cilia beat slowly and axonemes showed reduced velocity of microtubule sliding. Thus kinesin-13 positively regulates the axoneme length, influences the properties of ciliary tubulin, and likely indirectly, through its effects on the axonemal microtubules, affects the ciliary dynein-dependent motility.  相似文献   
16.
Microcarrier culture was investigated for the propagation of attenuated hepatitis A vaccine in the anchorage-dependent human fibroblast cell line, MRC-5. Cells were cultivated at 37°C for one to two weeks, while virus accumulation was performed at 32°C over 21 to 28 days. The major development focus for the microcarrier process was the difference between the cell and virus growth phases. Virus antigen yields, growth kinetics, and cell layer/bead morphology were each examined and compared for both the microcarrier and stationary T-flask cultures. Overall, cell densities of 4–5×106 cells/ml at 5–10 g/l beads were readily attained and could be maintained in the absence of infection at either 37°C or 32°C. Upon virus inoculation, however, substantial cell density decreases were observed as well as 2.5 to 10-fold lower per cell and per unit surface area antigen yields as compared to stationary cultures. The advantages as well as the problems presented by the microcarrier approach will be discussed.  相似文献   
17.
Using combined intracellular recordings and behavioral bioassays, it was found that lysozyme has two different effects in Paramecium, depending upon the concentrations used. At low concentrations (0.5 nm to 1.0 m) it acts as an effective chemorepellent that causes reliable electrophysiological changes. Lysozyme-induced somatic depolarizations, isolated by blocking K+ channels with Cs-TEA, showed concentration dependencies that were well correlated with chemorepulsion. Ion dependency experiments showed that these were Ca++ based depolarizations. Addition of either Na+ or Mg++ improves chemorepulsion by providing additional depolarizations. Both the depolarizations and chemorepulsion were blocked by 10 m neomycin, suggesting that the depolarization is necessary for this chemosensory transduction event. At higher concentrations (100 m), lysozyme is a secretagogue. A transient inward current, recorded in Ca++ alone solutions with Cs-TEA present, was seen in response to high lysozyme concentrations. The amplitude of this inward current was well correlated with exocytosis. Addition of neomycin (1.0 mm) eliminated both the inward current and exocytosis, suggesting a causal relationship. Neither amiloride or W-7, compounds previously suggested to affect the electrophysiological responses to secretagogues, had any significant effects. The mucopolysaccharide hydrolysis activity of lysozyme was not required for any of these responses. We propose that Paramecium have a high affinity receptor on the body plasma membrane that responds to either lysozyme or a related compound to cause an increase in a novel body Ca++ conductance. This receptor-operated Ca++ conductance causes membrane depolarization and chemorepulsion at low concentrations and triggers a sufficient Ca++ influx at high concentrations to cause exocytosis.We thank Drs. C. Kung and R. Preston for sharing mutants and Drs. H. Machemer, A. Turkewitz and K. Clark for their comments on the first draft of this work. This was supported by NSF grants BNS8916228 and MCB9410756 to TMH and a grant from the American Diabetes Association to BHS.  相似文献   
18.
Two missense mutations of the flight muscle-specific actin gene of Drosophila melanogaster, Act88F, assemble into normally structured myofibrils but affect the flight ability of flies and the mechanical kinetics of isolated muscle fibers. We describe the isolation of actin from different homozygous Act88F strains, including wild-type, an Act88F null mutant (KM88), and two Act88F single point mutations (E316K and G368E), their biochemical interactions with rabbit myosin subfragment 1 (S1), and behavior with rabbit myosin and heavy meromyosin in in vitro motility assays. The rabbit and wild-type Drosophila actins have different association rate constants with S1 (2.64 and 1.77 microM-1 s-1, respectively) and in vitro motilities (2.51, 1.60 microns s-1) clearly demonstrating an isoform-specific difference. The G368E mutation shows a reduced affinity for rabbit S1 compared with the wild type (increasing from 0.11 to 0.17 microM) and a reduced velocity in vitro (reduced by 19%). The E316K mutant actin has no change in affinity for myosin S1 or in vitro motility with heavy meromyosin but does have a reduced in vitro motility (15%) with myosin. These results are discussed with respect to the recently published atomic models for the actomyosin structure and our findings that G368E fibers show a reduced rate constant for delayed tension development and increased fiber stiffness. We interpret these results as possibly caused either by effects on A1 myosin light chain binding or conformational changes within the subdomain 1 of actin, which contains the myosin binding site. E316K is discussed with respect to its likely position within the tropomyosin binding site of actin.  相似文献   
19.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
20.
A circadian rhythm in photosynthesis occurs in Phaseolus vulgaris after transfer from a natural or artificial light:dark cycle to constant light. The rhythm in photosynthesis persists even when intercellular CO2 partial pressure is held constant, demonstrating that the rhythm in photosynthesis is not entirely due to stomatal control over the diffusion of CO2. Experiments were conducted to attempt to elucidate biochemical correlates with the circadian rhythm in photosynthesis. Plants were entrained to a 12-hour-day:12-hour-night light regimen and then monitored or sampled during a subsequent period of constant light. We observed circadian oscillations in ribulose-1,5-bisphosphate (RuBP) levels, and to a lesser extent in phosphoglyceric acid (PGA) levels, that closely paralleled oscillations in photosynthesis. However, the enzyme activity and activation state of the enzyme responsible for the conversion of RuBP to PGA, ribulose-1,5-bisphosphate carboxylase/oxygenase, showed no discernible circadian oscillation. Hence, we examined the possibility of circadian effects on RuBP regeneration. Neither ribulose-5-phosphate kinase activity nor the level of ATP fluctuated in constant light. Oscillations in triose-phosphate levels were out of phase with those observed for RuBP and PGA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号