首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   14篇
  316篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   15篇
  2013年   19篇
  2012年   22篇
  2011年   17篇
  2010年   14篇
  2009年   7篇
  2008年   13篇
  2007年   10篇
  2006年   11篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   9篇
  2000年   2篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1993年   4篇
  1992年   7篇
  1991年   6篇
  1990年   2篇
  1989年   8篇
  1988年   2篇
  1987年   6篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1973年   4篇
  1971年   2篇
  1968年   2篇
  1954年   2篇
  1927年   2篇
  1921年   2篇
  1920年   2篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
101.
Henley JR  Huang KH  Wang D  Poo MM 《Neuron》2004,44(6):909-916
Cytoplasmic second messengers, Ca2+ and cAMP, regulate nerve growth cone turning responses induced by many guidance cues, but the causal relationship between these signaling pathways has been unclear. We here report that, for growth cone turning induced by a gradient of myelin-associated glycoprotein (MAG), cAMP acts by modulating MAG-induced Ca2+ signaling. Growth cone repulsion induced by MAG was accompanied by localized Ca2+ signals on the side of the growth cone facing the MAG source, due to Ca2+ release from intracellular stores. Elevating cAMP signaling activity or membrane depolarization enhanced MAG-induced Ca2+ signals and converted growth cone repulsion to attraction. Directly imposing high- or low-amplitude Ca2+ signals with an extracellular gradient of Ca2+ ionophore was sufficient to trigger either attractive or repulsive turning, respectively. Thus, distinct Ca2+ signaling, which can be modulated by cAMP, mediates the bidirectional turning responses induced by MAG.  相似文献   
102.
103.
Prokaryotic picoplankton such as Synechococcus are relatively abundant in putatively Fe-limited high-nutrient, low-chlorophyll (HNLC) regions of the oceans. The physiology of Synechococcus under Fe stress has been studied less than eukaryotic algae. Recent evidence suggests that although biomass and growth rates of Synechococcus are not typically Fe limited in situ, cells may still exhibit symptoms of Fe stress. We grew Synechococcus A2169 and WH7803 in laboratory batch cultures in the artificial medium Aquil and enriched natural seawater, at a series of Fe concentrations and Fe:macronutrient ratios, and with either nitrate or ammonium as the sole nitrogen source. Cell yields, and in some experiments exponential specific growth rate (μ), were more readily Fe limited in the Atlantic isolate WH7803 than in the equatorial Pacific isolate A2169. In both strains, final cell yields spanned about an order of magnitude and decreased continuously with Fe concentration from 900 to 3.6 nM (150 μM N, 10 μM P), whereas μ decreased much less and only at Fe concentrations below 90 nM. Synechococcus yield was controlled by both absolute Fe concentration and Fe:macronutrient ratio, but μ was determined primarily by absolute Fe concentration. Contrary to theoretical predictions, neither yield nor μ was higher in Fe-limited cells grown in ammonium compared to nitrate. Under severe Fe stress, cellular chlorophyll (Chl) content and light-saturated gross photosynthetic capacity (Pcellm) decreased proportionately, and dark respiration (Rcelld) increased, such that net Pcellm was extremely low but gross PChlm was unchanged. This is the first report of an absolute increase in Rcelld under Fe stress in phytoplankton.  相似文献   
104.
We developed a new and simple method to collect sections of a whole brown rice kernel for investigation of histological properties. A single kernel of rice was dehydrated through a graded ethanol series, transferred to xylene, and embedded in paraffin. During sectioning of the blocks using a rotary microtome, we used a special adhesive tape to collect and place the sections on slides so they remained flat. The use of the adhesive tape technique combined with autofluorescence characteristics allowed us to visualize cell walls throughout an entire longitudinal or transverse section of a whole rice kernel. We obtained scanning electron microscopy images of the sections to determine section quality.  相似文献   
105.
Little is known about the dynamics of the dendritic transport of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) to synapses. Here, using virally expressed green fluorescent protein (GFP)-GluR1 and GFP-GluR2 and confocal photobleach techniques we show near real-time movement of these subunits in living cultured hippocampal neurons. GFP-GluR1 fluorescence was widely distributed throughout the extranuclear compartment with no evidence for discrete intracellular stores. GFP-GluR1 transport was predominantly proximal to distal at rates of 0.2-0.4 mum.s-1. GFP-GluR2 fluorescence was more punctate and localized at or close to the plasma membrane. Overall, GFP-GluR2 movement was less dynamic with distinct mobile and immobile pools. Neither activation nor inhibition of surface-expressed N-methyl-d-aspartate receptors or AMPARs had any significant effect on the rates of GFP-GluR1 or GFP-GluR2 dendritic transport. These results demonstrate that GluR1 is constitutively and rapidly transported throughout the neuron. GluR2, on the other hand, is less mobile, with a majority retained in relatively immobile membrane-associated clusters, with approximately 40% showing synaptic co-localization. Furthermore, the transport of both subunits is activity-independent, suggesting that the regulated delivery of AMPARs to the vicinity of synapses is not a mechanism that is involved in processes such as synaptic plasticity.  相似文献   
106.
In a four-part study, we expand on our previous report that bulbospinal serotonin (5HT) neuronal activation occurs with 24 h of cold exposure. To characterize temporal aspects, rats were exposed to 3 degrees C or were maintained at 22 degrees C for 2, 8, 48, or 96 h (experiment 1) or for 15, 30, or 60 min (experiment 2). To ensure that cold-induced changes in 5HT activity were not due to disturbances in diurnal pattern, rats in experiment 3 were exposed to cold (8 h) during the dark cycle. To explore the hypothesis that cold-induced 5HT activation is part of a broad metabolic response that includes activation of the sympathetic nervous system, metabolically impaired (hypothyroid) rats were exposed to 8 degrees C in experiment 4. Significant increments in 5-hydroxyindoleacetic acid (SHIAA) concentration were evident by 60 min of cold exposure and existed at all later time points measured. These findings were most robust in spinal cord and rostral brainstem. Activation in spinal cord was also found when rats were exposed to 8 h of cold during the dark cycle, the active period for rats. In experiment 4, hypothyroid rats exhibited significantly greater norepinephrine excretion compared with control rats exposed to the same cold stimulus; this finding was accompanied by significantly greater increments in 5HIAA concentration in rostral brainstem and spinal cord of hypothyroid rats. In addition, significant elevations in tryptophan concentration were noted throughout the brainstem and spinal cord of cold-exposed, hypothyroid rats relative to room temperature, hypothyroid rats. This finding suggested that elevations in 5HIAA concentration in these rats were due to increases in precursor availability. The implications of these findings relative to autonomic and metabolic control are discussed.  相似文献   
107.
Kainate receptors (KARs) are crucial for the regulation of both excitatory and inhibitory neurotransmission, but little is known regarding the mechanisms controlling KAR surface expression. We used super ecliptic pHluorin (SEP)-tagged KAR subunit GluR6a to investigate real-time changes in KAR surface expression in hippocampal neurons. Sindbis virus-expressed SEP-GluR6 subunits efficiently co-assembled with native KAR subunits to form heteromeric receptors. Diffuse surface-expressed dendritic SEP-GluR6 is rapidly internalized following either N-methyl-d-aspartate or kainate application. Sustained kainate or transient N-methyl-d-aspartate application resulted in a slow decrease of base-line surface KAR levels. Surprisingly, however, following the initial loss of surface receptors, a short kainate application caused a long lasting increase in surface-expressed KARs to levels significantly greater than those prior to the agonist challenge. These data suggest that after initial endocytosis, transient agonist activation evokes increased KAR exocytosis and reveal that KAR surface expression is bidirectionally regulated. This process may provide a mechanism for hippocampal neurons to differentially adapt their physiological responses to changes in synaptic activation and extrasynaptic glutamate concentration.  相似文献   
108.
N-ethylmaleimide sensitive fusion protein (NSF) is a chaperone that plays a crucial role in the fusion of vesicles with target membranes. NSF mediates the ATP-consuming dissociation of a core protein complex that assembles during vesicle fusion and it thereby recharges the fusion machinery to perform multiple rounds of fusion. The binding of NSF to the core complex is mediated by co-chaperones named soluble NSF attachment proteins (SNAPs), for which three isoforms (alpha, beta and gamma) are known. Here, we sought to identify novel targets of the NSF-SNAP complex. A yeast two-hybrid screen using the brain specific betaSNAP isoform as bait revealed, as expected, NSF and several isoforms of the SNARE protein syntaxin as interactors. In addition, three isoforms of the reticulon protein family and two isoforms of BNIP3 interacted with betaSNAP. A yeast two-hybrid screen using NSF as bait identified Rab11-FIP3 and the Pak-binding nucleotide exchange factor betaPIX as putative binding partners. betaPIX interacts with recombinant NSF in co-sedimentation assays and the two proteins may be co-immunoprecipitated. A leucine zipper (LZ) motif within the C-terminus of betaPIX mediates binding to NSF; however, this fragment of betaPIX does not exhibit dominant negative effects in a cellular assay. In summary, our results support the evolving view that NSF has numerous targets in addition to conventional SNARE complexes.  相似文献   
109.
110.
Kainate receptors (KARs) play fundamentally important roles in controlling synaptic function and regulating neuronal excitability. Postsynaptic KARs contribute to excitatory neurotransmission but the molecular mechanisms underlying their activity‐dependent surface expression are not well understood. Strong activation of KARs in cultured hippocampal neurons leads to the downregulation of postsynaptic KARs via endocytosis and degradation. In contrast, low‐level activation augments postsynaptic KAR surface expression. Here, we show that this increase in KARs is due to enhanced recycling via the recruitment of Rab11‐dependent, transferrin‐positive endosomes into spines. Dominant‐negative Rab11 or the recycling inhibitor primaquine prevents the kainate‐evoked increase in surface KARs. Moreover, we show that the increase in surface expression is mediated via a metabotropic KAR signalling pathway, which is blocked by the protein kinase C inhibitor chelerythrine, the calcium chelator BAPTA and the G‐protein inhibitor pertussis toxin. Thus, we report a previously uncharacterized positive feedback system that increases postsynaptic KARs in response to low‐ or moderate‐level agonist activation and can provide additional flexibility to synaptic regulation.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号