首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1806篇
  免费   278篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   18篇
  2017年   28篇
  2016年   31篇
  2015年   66篇
  2014年   56篇
  2013年   80篇
  2012年   102篇
  2011年   98篇
  2010年   61篇
  2009年   66篇
  2008年   71篇
  2007年   90篇
  2006年   88篇
  2005年   89篇
  2004年   74篇
  2003年   88篇
  2002年   84篇
  2001年   29篇
  2000年   40篇
  1999年   44篇
  1998年   42篇
  1997年   23篇
  1996年   36篇
  1995年   45篇
  1994年   35篇
  1993年   41篇
  1992年   57篇
  1991年   37篇
  1990年   26篇
  1989年   43篇
  1988年   30篇
  1987年   43篇
  1986年   33篇
  1985年   39篇
  1984年   29篇
  1983年   21篇
  1982年   20篇
  1981年   14篇
  1980年   14篇
  1979年   15篇
  1978年   18篇
  1977年   13篇
  1975年   11篇
  1974年   7篇
  1972年   8篇
  1970年   7篇
  1969年   7篇
排序方式: 共有2084条查询结果,搜索用时 31 毫秒
61.
In Pseudomonas aeruginosa, several exoproteins synthesized with a signal sequence (elastase, lipase, phospholipases, alkaline phosphatase and exotoxin A) are secreted by a two-step mechanism. They first cross the inner membrane in a signal sequence-dependent way, and are further translocated across the outer membrane in a second step requiring secretion functions encoded by several xcp genes. Ten xcp genes have already been characterized (Bally et al., 1992a). In this study, two additional xcp genes, xcpP and xcpQ, are described. They are located in the 40 min region of the chromosome where they probably define an operon, divergent from the xcpR–Z operon previously characterized in this region. These two genes encode two proteins, XcpP and XcpQ, similar to PulC and PulD of the pul system of Klebsiella oxytoca. Moreover, the two divergent operons share a common regulation which is growth-phase dependent.  相似文献   
62.
63.
Summary The present report firstly describes a pilot study in which, during early development of embryos of the common carp, Cyprinus carpio, the cellular adhesion to fibronectin (FN) was blocked by administration of GRGDS peptide (which binds to the FN-receptor). As this treatment resulted in developmental aberrations, suggesting a functional role for FN, the major part of the work was focussed on the distribution of reactivity of anti-FN antibodies during epiboly and gastrulation. GRGDS treatment had a concentration dependent effect on development. Incubation of embryos in 1.5 mg/ml from the 32-cell stage onwards caused a retardation of epiboly, which did not proceed beyond 60%. The embryos did not show involution, as was confirmed by histological study. These preliminary results suggest that FN is involved in both epiboly and gastrulation of carp embryos. During cleavage, no specific extracellular binding of anti-FN antiserum could be observed. However, binding to a number of cell membranes took place from early epiboly onwards. After the onset of gastrulation, we observed a gradually increasing number of the deepest epiblast cells, showing immunostaining on part of their surface, facing the yolk syncytial layer (YSL) or the involuted cells. During early epiboly, anti-FN binding was restricted to areas in front of the migratory hypoblast cells. Later on, binding was found at the border of hypoblast and epiblast cells. At 100% epiboly, some contact areas of epiblast and hypoblast showed a discontinuous lining of reactivity, whilst other areas appeared devoid of anti-FN binding sites. The results indicate that FN is involved in the migration and guidance of hypoblast cells during gastrulation in carp. Correspondence to: P. Gevers  相似文献   
64.
65.
66.
We have examined polarity of meiotic gene conversion in the niiA-niaD gene cluster of Aspergillus nidulans in two-point crosses. The type and position of the mutations represented by the niaD alleles and the correlation between the relative frequency of gene conversion and the physical position of these mutations were determined. We show that polarity of meiotic gene conversion is 5 to 3 (transcribed strand) within the niaD gene. Additional crosses involving a niiA allele and a niaD allele show little polarity of gene conversion, which suggests that the recombination events leading to restoration of the niaD gene are initiated upstream of the coding region of the niaD gene but within the niiA-niaD gene cluster, possibly within the intergenic promoter region.  相似文献   
67.
The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins.  相似文献   
68.
Aiouea opaca andBeilschmiedia hexanthera, recently collected in central French Guiana, are described and illustrated.  相似文献   
69.
Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.  相似文献   
70.
Bacterial cells have three phases of growth which are characterized respectively by: (1) balanced growth with a high yield of biomass; (2) balanced growth with lower biomass yield; and (3) unbalanced growth with lowest biomass yield. Phases 2 and 3 are associated with elevated concentrations of the regulatory nucleotides centered on guanosine-5′-diphosphate-3′-diphosphate. Maintenance of the correct growth phase is important in optimizing industrial product formation by bacterial populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号