首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1807篇
  免费   278篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   18篇
  2017年   28篇
  2016年   31篇
  2015年   66篇
  2014年   56篇
  2013年   80篇
  2012年   102篇
  2011年   98篇
  2010年   61篇
  2009年   66篇
  2008年   71篇
  2007年   90篇
  2006年   88篇
  2005年   89篇
  2004年   74篇
  2003年   88篇
  2002年   84篇
  2001年   29篇
  2000年   40篇
  1999年   44篇
  1998年   42篇
  1997年   23篇
  1996年   36篇
  1995年   45篇
  1994年   35篇
  1993年   41篇
  1992年   57篇
  1991年   37篇
  1990年   26篇
  1989年   43篇
  1988年   30篇
  1987年   43篇
  1986年   33篇
  1985年   39篇
  1984年   29篇
  1983年   21篇
  1982年   20篇
  1981年   14篇
  1980年   14篇
  1979年   15篇
  1978年   18篇
  1977年   13篇
  1975年   11篇
  1974年   7篇
  1972年   8篇
  1970年   7篇
  1969年   7篇
排序方式: 共有2085条查询结果,搜索用时 15 毫秒
21.
22.
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response.  相似文献   
23.
Acinetobacter calcoaceticus RAG-1 and MR-481, two standard strains used in microbial adhesion to hydrocarbons (MATH), were characterized by contact angles, pH-dependent zeta potentials, elemental surface composition by X-ray photoelectron spectroscopy (XPS), and molecular composition by infrared spectroscopy (IR). Negatively stained (methylamine tungstate) and ruthenium red-stained cells were studied by transmission electron microscopy to reveal the absence or presence of surface appendages. Despite the fact thatA. calcoaceticus RAG-1 is known to be extremely hydrophobic in MATH, whereas MR-481 is a completely non-hydrophobic mutant, neither XPS nor IR indicated a significant difference in chemical composition of the cell surfaces. Contact angles with polar liquids, water and formamide, were considerably higher on RAG-1 than on MR-481, in accordance with their relative hydrophobicities as measured by MATH. However, no significant differences in contact angles were observed between the two strains with apolar liquids like diiodomethane,-bromonaphthalene, and hexadecane. Fibrous extensions on RAG-1, observed after ruthenium red staining, were absent on the non-hydrophobic mutant MR-481. Tentatively, these extensions could be held responsible for the hydrophobicity ofA. calcoaceticus RAG-1.  相似文献   
24.
25.
The maximum specific growth rate of Streptococcus lactis and Streptococcus cremoris on synthetic medium containing glutamate but no glutamine decreases rapidly above pH 7. Growth of these organisms is extended to pH values in excess of 8 in the presence of glutamine. These results can be explained by the kinetic properties of glutamate and glutamine transport (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:2755-2761, 1987). At alkaline pH the rate of growth in the absence of glutamine is limited by the capacity to accumulate glutamate due to the decreased availability of glutamic acid, the transported species of the glutamate-glutamine transport system. Kinetic analysis of leucine and valine transport shows that the maximal rate of uptake of these amino acids by the branched-chain amino acid transport system is 10 times higher in S. lactis cells grown on synthetic medium containing amino acids than in cells grown in complex broth. For cells grown on synthetic medium, the maximal rate of transport exceeds by about 5 times the requirements at maximum specific growth rates for leucine, isoleucine, and valine (on the basis of the amino acid composition of the cell). The maximal rate of phenylalanine uptake by the aromatic amino acid transport system is in small excess of the requirement for this amino acid at maximum specific growth rates. Analysis of the internal amino acid pools of chemostat-grown cells indicates that passive influx of (some) aromatic amino acids may contribute to the net uptake at high dilution rates.  相似文献   
26.
Reaction centers of the phototrophic bacterium Rhodopseudomonas palustris were introduced as proton motive force-generating systems in membrane vesicles of two anaerobic bacteria. Liposomes containing reaction center-light-harvesting complex I pigment protein complexes were fused with membrane vesicles of Streptococcus cremoris or Clostridium acetobutylicum by freeze-thawing and sonication. Illumination of these fused membranes resulted in the generation of a proton motive force of approximately -110 mV. The magnitude of the proton motive force in these membranes could be varied by changing the light intensity. As a result of this proton motive force, amino acid transport into the fused membranes could be observed. The initial rate of leucine transport by membrane vesicles of S. cremoris increased exponentially with the proton motive force. An H+/leucine stoichiometry of 0.8 was determined from the steady-state level of leucine accumulation and the proton motive force, and this stoichiometry was found to be independent of the magnitude of the proton motive force. These results indicate that the introduction of bacterial reaction centers in membrane vesicles by the fusion procedure yields very attractive model systems for the study of proton motive force-consuming processes in membrane vesicles of (strict) anaerobic bacteria.  相似文献   
27.
The hydrolysis of the dipeptide leucyl-leucine by whole cells of Streptococcus cremoris Wg2 was dependent on the presence of the energy source lactose. Incubation of cells with uncouplers or ATPase inhibitors prevented the increase of peptidase activity upon the addition of lactose. Incubation with the ionophore nigericin resulted in decreased peptide hydrolysis activity, while incubation with valinomycin led to increased hydrolysis activity. In the presence of nigericin the ΔpH component of the proton motive force was decreased, while the electrical potential was increased. With valinomycin, the electrical potential was collapsed and the ΔpH was increased. When the external pH was decreased from 8 to 5, the rate of peptide hydrolyzing activity by whole cells increased with increasing ΔpH component. In contrast, the peptide hydrolyzing activity in the cell extract decreased with decreasing external pH. These results indicate that the ΔpH component of the proton motive force determines the leucyl-leucine hydrolyzing activity in S. cremoris Wg2.  相似文献   
28.
Summary The N-metabolism ofArthrocnemum fruticosum (L.) Moq., growing in a saline area north-east of the Dead Sea in Jordan, was studied over its vegetative growth period from March to September 1981. Plant and soil samples were taken at monthly intervals. Water content, Na+, K+, Cl, NH 4 + , NO 2 and NO 3 concentrations were determined in the soil extracts, and the same determinations plus ash weight, soluble carbohydrates, proline, proteins andin vivo nitrate reductase in the plant roots and shoots. Soil humidity decreased and salinity increased from March to August, with re-wetting occurring in late July. K+ and Cl were much lower in the soils than Na+. Plant relative dry weight increased during summer due to the absorption of Na+ in addition to increased organic dry weight. The uptake of Na+ was not balanced by a similar uptake of Cl. Ammonium and nitrate decreased in soil and plants in parallel with increasing salinity. Nitrite was only found in the roots and always in very low quantities. Proline was found only in March. The total soluble carbohydrates in the roots showed a short increase in June when the sodium in the plants also increased. It was concluded that carbohydrates may be used to balance osmotic shocks, but that another compatible compounds is necessary to maintatin long-term osmotic equilibrium. The nitrate reductase activity, measuredin vivo, and the soluble protein changed roughly in parallel with the internal nitrate from May to August, suggesting that nitrogen uptake and reduction in the plant is inhibited during summer when the soil is dry and very saline. This could be a direct effect of drought and/or salinity on the plants, or an indirect onevia an inhibition of nitrifying bacteria.  相似文献   
29.
Simultaneous incubation of bovine adrenal medullary plasma membranes (PM) with chromaffin granules (CG) resulted in the release of the soluble granular content. The molecular mechanism of this process was studied with several monoclonal antibodies (mAb) raised against different plasma membrane components. Specific inhibition of the catecholamine secretion was obtained upon incubation with the monoclonal antibody UIA/NEU/VI B17. The corresponding antigen had an apparent molecular weight of 54000 Dalton. These results suggest a specific recognition between proteins located on the plasma membrane and chromaffin granule membrane, the interaction of which mediates exocytosis.  相似文献   
30.
The coupling of membrane-bound glucose dehydrogenase (EC 1.1.99.17) to the respiratory chain has been studied in whole cells, cell-free extracts, and membrane vesicles of gram-negative bacteria. Several Escherichia coli strains synthesized glucose dehydrogenase apoenzyme which could be activated by the prosthetic group pyrrolo-quinoline quinone. The synthesis of the glucose dehydrogenase apoenzyme was independent of the presence of glucose in the growth medium. Membrane vesicles of E. coli, grown on glucose or succinate, oxidized glucose to gluconate in the presence of pyrrolo-quinoline quinone. This oxidation led to the generation of a proton motive force which supplied the driving force for uptake of lactose, alanine, and glutamate. Reconstitution of glucose dehydrogenase with limiting amounts of pyrrolo-quinoline quinone allowed manipulation of the rate of electron transfer in membrane vesicles and whole cells. At saturating levels of pyrrolo-quinoline quinone, glucose was the most effective electron donor in E. coli, and glucose oxidation supported secondary transport at even higher rates than oxidation of reduced phenazine methosulfate. Apoenzyme of pyrrolo-quinoline quinone-dependent glucose dehydrogenases with similar properties as the E. coli enzyme were found in Acinetobacter calcoaceticus (var. lwoffi) grown aerobically on acetate and in Pseudomonas aeruginosa grown anaerobically on glucose and nitrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号