首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   37篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   8篇
  2010年   10篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   9篇
  2005年   10篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   14篇
  1999年   12篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有214条查询结果,搜索用时 0 毫秒
101.
Targeting induced local lesions in genomes (TILLING) is a reverse-genetic method for identifying point mutations in chemically mutagenized populations. For functional genomics, it is ideal to have a stable collection of heavily mutagenized lines that can be screened over an extended period of time. However, long-term storage is impractical for Drosophila, so mutant strains must be maintained by continual propagation of live cultures. Here we evaluate a strategy in which ethylmethane sulfonate (EMS) mutagenized chromosomes were maintained as heterozygotes with balancer chromosomes for >100 generations before screening. The strategy yielded a spectrum of point mutations similar to those found in previous studies of EMS-induced mutations, as well as 2.4% indels (insertions and deletions). Our analysis of 1887 point mutations in 148 targets showed evidence for selection against deleterious lesions and differential retention of lesions among targets on the basis of their position relative to balancer breakpoints, leading to a broad distribution of mutational densities. Despite selection and differential retention, the success of a user-funded service based on screening a large collection several years after mutagenesis indicates sufficient stability for use as a long-term reverse-genetic resource. Our study has implications for the use of balancer chromosomes to maintain mutant lines and provides the first large-scale quantitative assessment of the limitations of using breeding populations for repositories of genetic variability.  相似文献   
102.
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions.  相似文献   
103.
104.
Discovery of induced point mutations in maize genes by TILLING   总被引:4,自引:0,他引:4  

Background

Going from a gene sequence to its function in the context of a whole organism requires a strategy for targeting mutations, referred to as reverse genetics. Reverse genetics is highly desirable in the modern genomics era; however, the most powerful methods are generally restricted to a few model organisms. Previously, we introduced a reverse-genetic strategy with the potential for general applicability to organisms that lack well-developed genetic tools. Our TILLING (Targeting Induced Local Lesions IN Genomes) method uses chemical mutagenesis followed by screening for single-base changes to discover induced mutations that alter protein function. TILLING was shown to be an effective reverse genetic strategy by the establishment of a high-throughput TILLING facility and the delivery of thousands of point mutations in hundreds of Arabidopsis genes to members of the plant biology community.

Results

We demonstrate that high-throughput TILLING is applicable to maize, an important crop plant with a large genome but with limited reverse-genetic resources currently available. We screened pools of DNA samples for mutations in 1-kb segments from 11 different genes, obtaining 17 independent induced mutations from a population of 750 pollen-mutagenized maize plants. One of the genes targeted was the DMT102 chromomethylase gene, for which we obtained an allelic series of three missense mutations that are predicted to be strongly deleterious.

Conclusions

Our findings indicate that TILLING is a broadly applicable and efficient reverse-genetic strategy. We are establishing a public TILLING service for maize modeled on the existing Arabidopsis TILLING Project.  相似文献   
105.
106.
Phylogenomics of the nucleosome   总被引:23,自引:0,他引:23  
Histones are best known as the architectural proteins that package the DNA of eukaryotic organisms, forming octameric nucleosome cores that the double helix wraps tightly around. Although histones have traditionally been viewed as slowly evolving scaffold proteins that lack diversification beyond their abundant tail modifications, recent studies have revealed that variant histones have evolved for diverse functions. H2A and H3 variants have diversified to assume roles in epigenetic silencing, gene expression and centromere function. Such diversification of histone variants and 'deviants' contradicts the perception of histones as monotonous members of multigene families that indiscriminately package and compact the genome. How these diverse functions have evolved from ancestral forms can be addressed by applying phylogenetic tools to increasingly abundant sequence data.  相似文献   
107.
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3-4 highly conserved amino acids within a 3' degenerate core. A longer 5' non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org).  相似文献   
108.
Centromeric H3-like histones, which replace histone H3 in the centromeric chromatin of animals and fungi, have not been reported in plants. We identified a histone H3 variant from Arabidopsis thaliana that encodes a centromere-identifying protein designated HTR12. By immunological detection, HTR12 localized at centromeres in both mitotic and meiotic cells. HTR12 signal revealed tissue- and stage-specific differences in centromere morphology, including a distended bead-like structure in interphase root tip cells. The anti-HTR12 antibody also detected spherical organelles in meiotic cells. Although the antibody does not label centromeres in the closely related species Arabidopsis arenosa, HTR12 signal was found on all centromeres in allopolyploids of these two species. Comparison of the HTR12 genes of A. thaliana and A. arenosa revealed striking adaptive evolution in the N-terminal tail of the protein, similar to the pattern seen in its counterpart in Drosophila. This finding suggests that the same evolutionary forces shape centromeric chromatin in both animals and plants.  相似文献   
109.
Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号