首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   51篇
  国内免费   5篇
  593篇
  2023年   2篇
  2021年   13篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   13篇
  2015年   33篇
  2014年   27篇
  2013年   33篇
  2012年   46篇
  2011年   38篇
  2010年   25篇
  2009年   14篇
  2008年   24篇
  2007年   27篇
  2006年   23篇
  2005年   23篇
  2004年   34篇
  2003年   21篇
  2002年   27篇
  2001年   11篇
  2000年   15篇
  1999年   13篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   13篇
  1991年   4篇
  1990年   13篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有593条查询结果,搜索用时 10 毫秒
451.
A chitinase (CHT), a chitosanase (CHS) and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU020 with squid pen as the sole carbon/nitrogen source. The molecular masses of CHT, CHS and PRO determined by SDS-PAGE were approximately 65 kDa, 55 kDa and 55 kDa, respectively. CHT and CHS were inhibited by Mn2+, EDTA and PRO was inhibited by Mg2+, EDTA. The antioxidant activity of TKU020 culture supernatant was 78% (DPPH scavenging ability). N-Acetylglucosamine (GlcNAc) and N-acetyl chitobiose (GlcNAc)2 were also produced from the culture supernatant by using TKU020 strain fermentation. The maximum production of GlcNAc and (GlcNAc)2 was 1.3 mg/mL and 2.7 mg/mL, respectively, after 4 days of fermentation. With this method, we have shown that squid pen wastes can be utilized and it is effective in the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides, facilitating its potential use in industrial applications and functional foods.  相似文献   
452.
Two genes, pbpA (orf18) and pbp2 (orf19) located on the downstream of clavulanic acid (CA) gene cluster of Streptomyces clavuligerus were cloned into pET-28a(+), and confirmed to encode a family of high molecular-weight penicillin-binding proteins (PBPs). Both genes were amplified from genomic DNA by PCR and expressed in E. coli BL21 (DE3). Hydropathy plots of the proteins revealed a single stretch of hydrophobic amino acids indicating them to be transmembrane proteins. Pbp2 had lower affinity to penicillin G compared to PbpA, and was essential to the cell growth in contrast to PbpA. Revisions requested 3 November 2005; Revisions received 13 December 2005  相似文献   
453.
Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4), circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2), and lymphatic endothelial proteins (podoplanin, VEGFR-3). Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133− cells isolated from LM fluids. CD133− LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133− LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs.  相似文献   
454.
The esterification of all-trans retinol and the occurrence of cytosolic retinoid-binding proteins was investigated in cultured bovine retinal pigment epithelium (RPE) cells. 3H-labeled all-trans retinyl ester (mainly palmitate) was formed at an initial rate of 0.1 nmol·mg protein−1·min−1 when 3H-labeled all-trans retinol was incubated with the 100,000 g pellet obtained from a homogenate of freshly-harvested cells. No esterification could be detected under the same conditions after 14 days in culture in defined medium (DM) or in medium containing 20% fetal bovine serum (CM). No enhancement or restoration of esterifying capacity was observed when the assay mixture was supplemented with palmitoyl CoA. As determined by specific, saturable binding of 3H-labeled all-trans retinol and 3H-labeled 11-cis retinal to proteins with mol. wts 16,000 and 33,000 dalton on calibrated Bio-Sil TSK 250 size-exclusion columns, the cytosol of freshly-harvested RPE cells contained cellular retinol-binding protein (CRBP) and cellular retinal-binding protein (CRAlBP). By comparison with the quantity of 3H-labeled all-trans retinol bound under identical conditions to pure dog liver CRBP, it was estimated that fresh RPE cells contained 102 ± 3 ng CRBP·μg cytosol protein−1. In cultured and subcultured cells, CRBP was present at much lower levels (down to one-tenth of the initial amounts) and CRAlBP could not be detected. Since binding of 3H-labeled all-trans retinoic acid to a protein with molecular weight of 17,000 dalton was not observed in the cytosols of fresh or cultured cells, it was concluded that cellular retinoic acid binding protein (CRABP) was either present at very low levels or absent altogether. An unidentified peak of specific 3H-labeled all-trans-retinoic acid binding at mol. wt 61,000 dalton was prominent in subcultured cells. These results show that in RPE cells in culture the expression of differentiated phenotype with respect to retinoid utilization undergoes significant modification. It is postulated that changes in the composition of the extracellular matrix (e.g. absence of interstitial retinol-binding protein, IRBP) may be involved.  相似文献   
455.
The electrolysis processes such as hydrogen evolution reaction (HER) require high efficient catalysts with robust surface stability. A high conductivity is also necessary to speed up the charge transport between the catalyst and the electrolyte. Recently, the observation of exceedingly high conductivity in the topological semimetal MoP, has provided a model catalyst to investigate the correlation between the electrical transport and the electrocatalytic activity for the HER. Thus, MoP is encapsulated in a Mo, P codoped carbon layer (MoP@C). This composite material exhibits outstanding HER performance, with an extremely low overpotential of 49 mV at a current density of 10 mA cm?2 and a Tafel slope of 54 mV dec?1 in an alkaline medium. In addition, electron transport analysis indicates that MoP exhibits high conductivity and mobility due to the existence of triple‐point fermions and a complex Fermi surface. Furthermore, the presence of P? C and Mo? C bonds at the interface between the carbon layer and the MoP particles modulates the band structure of MoP@C and facilitates fast electron transfer, accumulation, and subsequent delocalization, which are in turn responsible for the excellent HER activity.  相似文献   
456.
Agents that interfere with mitotic progression by disturbing microtubule dynamics are commonly used for cancer treatment. Previously, a series of aroylquinolone regioisomers as novel microtubule inhibitors were discovered. One of these new compounds, MPT0B214 inhibited tubulin polymerization through strongly binding to the tubulin’s colchicine-binding site and had cytotoxic activity in a variety of human tumor cell lines. After treatment with MPT0B214, KB cells were arrested in the G2-M phase before cell death occurred, which were associated with upregulation of cyclin B1, dephosphorylation of Cdc2, phosphorylation of Cdc25C and elevated expression of the mitotic marker MPM-2. Furthermore, the compound induced apoptotic cell death through mitochondria/caspase 9-dependent pathway. Notably, several KB-derived multidrug-resistant cancer cell lines were also sensitive to MPT0B214 treatment. These findings showed that MPT0B214 is a potential compound in the treatment of various malignancies.  相似文献   
457.
Inflammasomes are multi-protein complexes that regulate chronic inflammation-associated diseases by inducing interleukin-1 β (IL-1β) secretion. Numerous components involved in inflammasome activation have been identified, but the mechanisms of inflammasome-mediated IL-1β secretion have not yet been fully explored. Here, we demonstrate that end-binding protein 1 (EB1), which is required for activation of AIM2 inflammasome complex, links the AIM2 inflammasome to autophagy-dependent secretion. Imaging studies revealed that AIM2 inflammasomes colocalize with microtubule organizing centers and autophagosomes. Biochemical analyses showed that poly(dA-dT)-activated AIM2 inflammasomes induce autophagy and IL-1β secretion in an LC3-dependent fashion. Furthermore, depletion of EB1 decreases autophagic shedding and intracellular trafficking. Finally, we found that the 5′-AMP activated protein kinase may regulate this EB1-mediated autophagy-based inflammasome-induced secretion of IL-1β. These findings reveal a novel EB1-mediated pathway for the secretion of IL-1β.  相似文献   
458.
Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18∶0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.  相似文献   
459.
460.
Phosphoserine-binding modules help determine the specificity of signal transduction events. One such module, the group IV WW domain, plays an essential role in targeting the phosphorylation-specific prolyl isomerase Pin1 to its substrates. These modules require Ser/Thr phosphorylation of their ligands for binding activity. However, phosphorylation of these modules and its functional significance have not been described, nor is it known whether the function of Pin1 is regulated. Here we show that Pin1 WW domain is phosphorylated on Ser(16) both in vitro and in vivo. Further, this phosphorylation regulates the ability of the WW domain to mediate Pin1 substrate interaction and cellular localization. Moreover, both Pin1 and WW domain mutants refractory to Ser(16) phosphorylation act as dominant-negative mutants to induce mitotic block and apoptosis and increase multinucleated cells with 8 N DNA content. Thus, phosphorylation is a new mechanism critical for regulating WW domain phosphoserine binding activity and Pin1 function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号