首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1284篇
  免费   113篇
  国内免费   1篇
  1398篇
  2024年   2篇
  2023年   5篇
  2022年   16篇
  2021年   31篇
  2020年   15篇
  2019年   29篇
  2018年   19篇
  2017年   34篇
  2016年   52篇
  2015年   55篇
  2014年   70篇
  2013年   97篇
  2012年   104篇
  2011年   103篇
  2010年   68篇
  2009年   58篇
  2008年   83篇
  2007年   78篇
  2006年   74篇
  2005年   52篇
  2004年   60篇
  2003年   39篇
  2002年   55篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   15篇
  1997年   12篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   11篇
  1992年   13篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   8篇
  1983年   7篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1978年   6篇
  1977年   6篇
  1975年   2篇
  1952年   3篇
  1948年   1篇
排序方式: 共有1398条查询结果,搜索用时 15 毫秒
151.
To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread.  相似文献   
152.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   
153.
Direct targeting to the cytoplasm and nucleus using protein transduction domains (PTD) has been described to be efficient but non-cell-type-specific, and only has clinical relevance when the molecule is active exclusively in the diseased cell. The use of PTDs is an attractive mechanism to improve drug delivery. In this work, we designed recombinant proteins that contain epidermal growth factor as ligand to render uptake target cell-specific. We evaluated the potential of several PTDs to induce the cytosolic uptake of the catalytic domain of diphtheria toxin by measuring cytotoxicity. Although PTD-dependent membrane transfer is very low, the proteins exhibited concentration-dependent cytotoxic activity. Higher binding at 4 degrees C compared to 37 degrees C suggests that uptake by the PTDs MTS and TLM occurs via an endocytic pathway. Non-specific binding is predominantly a function of the PTD and greatly increases by substitution of a non-polar glycine with a negatively charged glutamate in the PTD HA2.  相似文献   
154.
The effect of radiation dose and different release ratios of treated (T) to untreated (U) Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae), on the incidence of fruit damage, the competitiveness of the treated males, and population growth was examined inside field cages. Navel orange trees were individually enclosed in large nylon mesh cages. Newly emerged adult moths treated with either 150 or 200 Gy of gamma radiation were released into the cages at ratios of 5T:1U or 10T:1U. The fruit was collected after 4 wk, and the number of damaged fruit and larval entries per cage were recorded for each treatment. Infested fruit was maintained in the laboratory until all emerging F1 progeny were collected and outcrossed to untreated moths of the opposite sex. Treatment had a significant effect on the mean number of larval entries and on the number of undamaged fruit per cage. The number of larval entries as well as the number of F1 progeny per cage decreased as the overflooding ratio increased. A significant reduction in egg hatch was observed in the progeny of crosses between F1 females or F1 males originating from the treatment cages compared with crosses of F1 moths originating from the control cages. The lowest mean number of fertile F1 adult females and males was obtained from the 150 Gy and 10T:1U ratio treatment. This treatment also showed the lowest per generation rate of increase (< 1 from the parental [P1] to the F1 generation), suggesting that growth in the fertile population would have been prevented if releases of treated moths at this dose and ratio were maintained in the field.  相似文献   
155.
The human APOBEC3G (A3G) protein is a cellular polynucleotide cytidine deaminase that acts as a host restriction factor of retroviruses, including HIV-1 and various transposable elements. Recently, three NMR and two crystal structures of the catalytic deaminase domain of A3G have been reported, but these are in disagreement over the conformation of a terminal β-strand, β2, as well as the identification of a putative DNA binding site. We here report molecular dynamics simulations with all of the solved A3G catalytic domain structures, taking into account solubility enhancing mutations that were introduced during derivation of three out of the five structures. In the course of these simulations, we observed a general trend towards increased definition of the β2 strand for those structures that have a distorted starting conformation of β2. Solvent density maps around the protein as calculated from MD simulations indicated that this distortion is dependent on preferential hydration of residues within the β2 strand. We also demonstrate that the identification of a pre-defined DNA binding site is prevented by the inherent flexibility of loops that determine access to the deaminase catalytic core. We discuss the implications of our analyses for the as yet unresolved structure of the full-length A3G protein and its biological functions with regard to hypermutation of DNA.  相似文献   
156.
The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively.In Advenella mimigardefordensis strain DPN7T (15, 42), three independent mutants with an insertion of Tn5::mob in the lpdA gene coding for the E3 component of the pyruvate dehydrogenase multi-enzyme complex revealed an interesting phenotype: these mutants were fully impaired in utilizing 3,3′-dithiodipropionic acid (DTDP) as the sole carbon and energy source, whereas the growth on no other tested carbon sources was affected (41). Our main interest in the catabolism of DTDP is to unravel the pathway and to identify the involved enzymes. Furthermore, the application of this disulfide as precursor substrate for biotechnological production of polythioesters (PTE) (22) is of interest. Since poly(3-mercaptopropionate) (PMP) biosynthesis depends hitherto on supplying the harmful thiol 3-mercaptopropionic acid (3MP) (35), an improvement of the recombinant Escherichia coli system by heterologous expression of enzymes capable of cleaving the less toxic DTDP symmetrically into two molecules of 3MP, which are then polymerized, could be an important achievement toward large-scale biotechnological production of PMP.Two different enzyme systems catalyzing the conversion of disulfides into the corresponding thiols are already known and have been described in detail. (i) Enzymes belonging to the well-characterized family of pyridine-nucleotide disulfide oxidoreductases (25) contain a redox center formed by a disulfide bridge coupled to a flavin ring. They catalyze a simultaneous two-electron transfer via the enzymatic active disulfides associated with the pyridine nucleotides and flavin, toward the substrate (39, 40). (ii) An alternative disulfide reduction is catalyzed by enzymes using iron-sulfur clusters to cleave of disulfide substrates in two one-electron reduction steps (37). The disrupted gene in A. mimigardefordensis was designated lpdAAm (EC 1.8.1.4), and it encodes a homodimeric flavoprotein, the dihydrolipoamide dehydrogenase LpdAAm (i.e., the E3 component of the pyruvate dehydrogenase multi-enzyme complex of A. mimigardefordensis strain DPN7T) belonging to the above-mentioned family of pyridine nucleotide-disulfide oxidoreductases. Enzymes of this class share high sequence and structural similarities and catalyze reduction of compounds which are linked by disulfide bonds (38). Alkylhydroperoxide reductases, coenzyme A disulfide reductases, glutathione reductases, mycothione reductases, thioredoxin reductases, and trypanothione reductases also, in addition to dihydrolipoamide dehydrogenases, belong to this family (3, 38). The physiological function of LpdAAm is most probably the conversion of lipoamide to dihydrolipoamide, but the reduction of DTDP into two molecules of 3MP (Fig. (Fig.1)1) is also predicted, enabling the first step in DTDP catabolism in A. mimigardefordensis strain DPN7T (41).Open in a separate windowFIG. 1.Reactions catalyzed by LpdAAm and PdhLRe. Presented are the enzymatic conversions of DTDP into two molecules of 3MP (A), lipoamide into dihydrolipoamide (B), and DTNB into two molecules of NTB (C). Abbreviations: DTDP, 3,3′-dithiodipropionic acid; 3MP, 3-mercaptopropionic acid; DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid); NTB, 2-nitro-5-thiobenzoic acid.Ralstonia eutropha H16 synthesizes copolymers of 3-hydroxybutyrate and 3MP, if 3MP (23) or DTDP (22) is supplied as a precursor in addition to a second utilizable carbon source. Although R. eutropha is not able to grow with DTDP as the sole carbon source, it must be capable of cleaving this organic disulfide symmetrically, because it synthesizes from it heteropolymers containing the resulting 3MP. Thus, R. eutropha must possess at least one gene encoding a DTDP-cleaving enzyme. Five genes coding for homologues of a dihydrolipoamide dehydrogenase (DHLDH), which in A. mimigardefordensis DPN7T is obviously involved in DTDP degradation, are known to exist in the genome of R. eutropha H16 (27; M. Raberg, J. Bechmann, U. Brandt, J. Schlüter, B. Uischner, and A. Steinbüchel, unpublished data). Therefore, LpdAAm and the five DHLDH paralogues of R. eutropha H16 were aligned and compared (Fig. (Fig.2).2). Subsequently, lpdAAm and the gene encoding the DHLDH belonging to the pyruvate dehydrogenase complex of R. eutropha H16 (pdhLRe) were cloned, heterologously expressed in Escherichia coli, purified, and assayed.Open in a separate windowFIG. 2.Phylogenetic relationships of the A. mimigardefordensis strain DPN7T LpdA (boldface), R. eutropha H16 PdhL (boldface), and homologues. The neighbor-joining plot was derived from a CLUSTAL X alignment of amino acid sequences closely related to LpdAAm. The amino acid sequence of the outer membrane protein P64K from Neisseria meningitidis was used as the outgroup. GenBank accession numbers are given in parentheses. Scale bar, 10% sequence divergence.  相似文献   
157.

Objective

Multimorbidity is a common problem in the elderly that is significantly associated with higher mortality, increased disability and functional decline. Information about interactions of chronic diseases can help to facilitate diagnosis, amend prevention and enhance the patients'' quality of life. The aim of this study was to increase the knowledge of specific processes of multimorbidity in an unselected elderly population by identifying patterns of statistically significantly associated comorbidity.

Methods

Multimorbidity patterns were identified by exploratory tetrachoric factor analysis based on claims data of 63,104 males and 86,176 females in the age group 65+. Analyses were based on 46 diagnosis groups incorporating all ICD-10 diagnoses of chronic diseases with a prevalence ≥ 1%. Both genders were analyzed separately. Persons were assigned to multimorbidity patterns if they had at least three diagnosis groups with a factor loading of 0.25 on the corresponding pattern.

Results

Three multimorbidity patterns were found: 1) cardiovascular/metabolic disorders [prevalence female: 30%; male: 39%], 2) anxiety/depression/somatoform disorders and pain [34%; 22%], and 3) neuropsychiatric disorders [6%; 0.8%]. The sampling adequacy was meritorious (Kaiser-Meyer-Olkin measure: 0.85 and 0.84, respectively) and the factors explained a large part of the variance (cumulative percent: 78% and 75%, respectively). The patterns were largely age-dependent and overlapped in a sizeable part of the population. Altogether 50% of female and 48% of male persons were assigned to at least one of the three multimorbidity patterns.

Conclusion

This study shows that statistically significant co-occurrence of chronic diseases can be subsumed in three prevalent multimorbidity patterns if accounting for the fact that different multimorbidity patterns share some diagnosis groups, influence each other and overlap in a large part of the population. In recognizing the full complexity of multimorbidity we might improve our ability to predict needs and achieve possible benefits for elderly patients who suffer from multimorbidity.  相似文献   
158.
159.
In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C 6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.  相似文献   
160.
Embryonic germ cells (EGC) are cultured pluripotent cells derived from primordial germ cells (PGC). This study explored the possibility of establishing porcine EGC from domestic breeds and Yucatan mini pigs using embryos at Days 17-24 of gestation. In vitro culture of PGC from both pooled and individual embryos resulted in the successful derivation of putative EGC lines from Days 20 to 24 with high efficiency. RT-PCR showed that gene expression among all 31 obtained cell lines was very similar, and only minor changes were detected during in vitro passaging of the cells. Genome-wide RNA-Seq expression profiling showed no expression of the core pluripotency markers OCT4, SOX2, and NANOG, although most other pluripotency genes were expressed at levels comparable to those of mouse embryonic stem cells (ESC). Moreover, germ-specific genes such as BLIMP1 retained their expression. Functional annotation clustering of the gene expression pattern of the putative EGC suggests partial differentiation toward endo/mesodermal lineages. The putative EGC were able to form embryoid bodies in suspension culture and to differentiate into epithelial-like, mesenchymal-like, and neuronal-like cells. However, their injection into immunodeficient mice did not result in teratoma formation. Our results suggest that the PGC-derived cells described in this study are EGC-like, but seem to be multipotent rather than pluripotent cells. Nevertheless, the thorough characterization of these cells in this study, and especially the identification of various genes and pathways involved in pluripotency by RNA-Seq, will serve as a rich resource for further derivation of porcine EGC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号