首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   159篇
  国内免费   1篇
  2084篇
  2023年   9篇
  2022年   19篇
  2021年   45篇
  2020年   21篇
  2019年   35篇
  2018年   27篇
  2017年   42篇
  2016年   67篇
  2015年   79篇
  2014年   98篇
  2013年   126篇
  2012年   143篇
  2011年   152篇
  2010年   103篇
  2009年   93篇
  2008年   129篇
  2007年   112篇
  2006年   113篇
  2005年   96篇
  2004年   105篇
  2003年   69篇
  2002年   92篇
  2001年   18篇
  2000年   10篇
  1999年   14篇
  1998年   20篇
  1997年   17篇
  1996年   20篇
  1995年   13篇
  1994年   14篇
  1993年   19篇
  1992年   17篇
  1991年   6篇
  1990年   9篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   9篇
  1985年   4篇
  1984年   9篇
  1983年   12篇
  1982年   5篇
  1981年   13篇
  1980年   12篇
  1979年   5篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   5篇
  1952年   3篇
排序方式: 共有2084条查询结果,搜索用时 0 毫秒
81.
YycI and YycH are two membrane-anchored periplasmic proteins that regulate the essential Bacillus subtilis YycG histidine kinase through direct interaction. Here we present the crystal structure of YycI at a 2.9-A resolution. YycI forms a dimer, and remarkably the structure resembles that of the two C-terminal domains of YycH despite nearly undetectable sequence homology (10%) between the two proteins.  相似文献   
82.
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)‐associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR‐induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate‐treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in‐gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3ε, WASP, and WIPF1) and identified several novel putative Nck‐binding proteins. We subsequently verified the SH2 domain binding to the actin‐binding protein HIP55 and to FYB/ADAP, and the SH3‐mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR‐to‐cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.  相似文献   
83.
Microbial degradation of the plant cell wall is the primary mechanism by which carbon is utilized in the biosphere. The hydrolysis of xylan, by endo-beta-1,4-xylanases (xylanases), is one of the key reactions in this process. Although amino acid sequence variations are evident in the substrate binding cleft of "family GH10" xylanases (see afmb.cnrs-mrs.fr/CAZY/), their biochemical significance is unclear. The Cellvibrio japonicus GH10 xylanase CjXyn10C is a bi-modular enzyme comprising a GH10 catalytic module and a family 15 carbohydrate-binding module. The three-dimensional structure at 1.85 A, presented here, shows that the sequence joining the two modules is disordered, confirming that linker sequences in modular glycoside hydrolases are highly flexible. CjXyn10C hydrolyzes xylan at a rate similar to other previously described GH10 enzymes but displays very low activity against xylooligosaccharides. The poor activity on short substrates reflects weak binding at the -2 subsite of the enzyme. Comparison of CjXyn10C with other family GH10 enzymes reveals "polymorphisms" in the substrate binding cleft including a glutamate/glycine substitution at the -2 subsite and a tyrosine insertion in the -2/-3 glycone region of the substrate binding cleft, both of which contribute to the unusual properties of the enzyme. The CjXyn10C-substrate complex shows that Tyr-340 stacks against the xylose residue located at the -3 subsite, and the properties of Y340A support the view that this tyrosine plays a pivotal role in substrate binding at this location. The generic importance of using CjXyn10C as a template in predicting the biochemical properties of GH10 xylanases is discussed.  相似文献   
84.
The solid-phase synthesis and an ADME investigation with albino and pigmented male rats of the doubly 14C-labelled beta/alpha-tetrapeptide derivative Ac-beta3 hTyr-(D)Trp-beta3 hLys-beta3 hThr-lactone (3; Fig. 3) are described. After intravenous (i.v.) and peroral (p.o.) administration of the peptide, its concentration in blood and plasma, its tissue distribution, and the metabolism and the excretion of the peptide were analyzed over a period of up to 7 days post dose. The tetrapeptide in its ring opened form, 5, has a bioavailability of ca. 25%; radioactivity is distributed in the animals in an organ-specific way, and the compound appears to pass the blood-brain barrier to a very small extent, if at all (Tables 1-3 and Figs. 2-6). Excretion (37% renal, 44% fecal, including biliary) of the tetrapeptide 4 days after i.v. administration is almost complete, with only 4.3% remaining in the carcass; 4 days after p.o. administration 97% of the dose has been excreted in the feces. Radiochromatograms taken of plasma (0.5 and 24 h after i.v. dosing) and of urine and feces extracts (0-48 h collected) reveal the presence of lactone 3 and/or the corresponding hydroxy acid 5 with essentially no or very minor other peaks, respectively, representing possible metabolites (Tables 4-6, and Fig. 7 and 8). A comparison with a previous ADME investigation of a beta-nonapeptide show that--except for the lack of metabolism--all aspects of exposure, distribution, and elimination are different (structure-specific properties). The investigated tetrapeptide 3 is a potent and highly specific agonist of the somatostatin receptor hsst4, rendering the results described herein promising for diagnostic and therapeutic applications of beta-peptides.  相似文献   
85.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   
86.
The human APOBEC3G (A3G) protein is a cellular polynucleotide cytidine deaminase that acts as a host restriction factor of retroviruses, including HIV-1 and various transposable elements. Recently, three NMR and two crystal structures of the catalytic deaminase domain of A3G have been reported, but these are in disagreement over the conformation of a terminal β-strand, β2, as well as the identification of a putative DNA binding site. We here report molecular dynamics simulations with all of the solved A3G catalytic domain structures, taking into account solubility enhancing mutations that were introduced during derivation of three out of the five structures. In the course of these simulations, we observed a general trend towards increased definition of the β2 strand for those structures that have a distorted starting conformation of β2. Solvent density maps around the protein as calculated from MD simulations indicated that this distortion is dependent on preferential hydration of residues within the β2 strand. We also demonstrate that the identification of a pre-defined DNA binding site is prevented by the inherent flexibility of loops that determine access to the deaminase catalytic core. We discuss the implications of our analyses for the as yet unresolved structure of the full-length A3G protein and its biological functions with regard to hypermutation of DNA.  相似文献   
87.
Natural products play an important role in the development of anticancer drugs. To date, predominantly metabolites from plants and bacteria served as lead structures for anticancer agents. Fungal metabolites and derivatives thereof are much less investigated for their potential in cancer therapy. There are, however, some promising candidates derived from fungi in clinical phases I and II studies. This review gives an overview on the role of natural products in cancer therapy and summarises some of the latest results of our group in this area.  相似文献   
88.
An amino acid, lethal to New Hampshire chickens (LD50, 150 mg/kg) was isolated from dried sclerotia of the fungus Sclerotium rolfsii (Sacc.). Purification of the rather unstable compound was effected on a cation exchange column by means of displacement chromatography and the amino acid was crystallised from 80% methanol. A structure was assigned to the compound on the basis of available chemical and physical data, namely 2(S),3(R)-2- amino-3-hydroxypent-4-ynoic acid. Confirmation of this structure was gained by direct and indirect synthetic procedures.  相似文献   
89.

Introduction

Agonistic antibodies targeting TRAIL-receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) are being developed as a novel therapeutic approach in cancer therapy including pancreatic cancer. However, the cellular distribution of these receptors in primary pancreatic cancer samples has not been sufficiently investigated and no study has yet addressed the issue of their prognostic significance in this tumor entity.

Aims and Methods

Applying tissue microarray (TMA) analysis, we performed an immunohistochemical assessment of TRAIL-receptors in surgical samples from 84 consecutive patients affected by pancreatic adenocarcinoma and in 26 additional selected specimens from patients with no lymph nodes metastasis at the time of surgery. The prognostic significance of membrane staining and staining intensity for TRAIL-receptors was evaluated.

Results

The fraction of pancreatic cancer samples with positive membrane staining for TRAIL-R1 and TRAIL-R2 was lower than that of cells from surrounding non-tumor tissues (TRAIL-R1: p<0.001, TRAIL-R2: p = 0.006). In addition, subgroup analyses showed that loss of membrane staining for TRAIL-R2 was associated with poorer prognosis in patients without nodal metastases (multivariate Cox regression analysis, Hazard Ratio: 0.44 [95% confidence interval: 0.22−0.87]; p = 0.019). In contrast, analysis of decoy receptors TRAIL-R3 and -R4 in tumor samples showed an exclusively cytoplasmatic staining pattern and no prognostic relevance.

Conclusion

This is a first report on the prognostic significance of TRAIL-receptors expression in pancreatic cancer showing that TRAIL-R2 might represent a prognostic marker for patients with early stage disease. In addition, our data suggest that loss of membrane-bound TRAIL-receptors could represent a molecular mechanism for therapeutic failure upon administration of TRAIL-receptors-targeting antibodies in pancreatic cancer. This hypothesis should be evaluated in future clinical trials.  相似文献   
90.
Little is known about the effect of hormones on the photosynthetic process. Therefore, we studied Rubisco content and expression along with gas exchange parameters in transgenic tobacco (Nicotiana tabacum) plants that are not able to sense ethylene. We also tested for a possible interaction between ethylene insensitivity, abscisic acid (ABA), and sugar feedback on photosynthesis. We measured Rubisco content in seedlings grown in agar with or without added sugar and fluridone, and Rubisco expression in hydroponically grown vegetative plants grown at low and high CO(2). Furthermore, we analyzed gas exchange and the photosynthetic machinery of transformants and wild-type plants grown under standard conditions. In the presence of exogenous glucose (Glc), agar-grown seedlings of the ethylene-insensitive genotype had lower amounts of Rubisco per unit leaf area than the wild type. No differences in Rubisco content were found between ethylene-insensitive and wild-type seedlings treated with fluridone, suggesting that inhibition of ABA production nullified the effect of Glc application. When larger, vegetative plants were grown at different atmospheric CO(2) concentrations, a negative correlation was found between Glc concentration in the leaves and Rubisco gene expression, with stronger repression by high Glc concentrations in ethylene-insensitive plants. Ethylene insensitivity resulted in plants with comparable fractions of nitrogen invested in light harvesting, but lower amounts in electron transport and Rubisco. Consequently, photosynthetic capacity of the insensitive genotype was clearly lower compared with the wild type. We conclude that the inability to perceive ethylene results in increased sensitivity to Glc, which may be mediated by a higher ABA concentration. This increased sensitivity to endogenous Glc has negative consequences for Rubisco content and photosynthetic capacity of these plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号