首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1320篇
  免费   121篇
  国内免费   1篇
  1442篇
  2024年   2篇
  2023年   5篇
  2022年   16篇
  2021年   32篇
  2020年   15篇
  2019年   29篇
  2018年   19篇
  2017年   33篇
  2016年   51篇
  2015年   56篇
  2014年   74篇
  2013年   101篇
  2012年   106篇
  2011年   103篇
  2010年   70篇
  2009年   58篇
  2008年   88篇
  2007年   83篇
  2006年   74篇
  2005年   52篇
  2004年   63篇
  2003年   41篇
  2002年   61篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   15篇
  1997年   13篇
  1996年   11篇
  1995年   9篇
  1994年   10篇
  1993年   11篇
  1992年   13篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   6篇
  1977年   6篇
  1975年   2篇
  1952年   3篇
排序方式: 共有1442条查询结果,搜索用时 15 毫秒
91.
The synepitheliochorial placenta of ruminants is constructed of multiple tissue layers that separate maternal and fetal blood. In nuclear transfer cloned ruminants, however, placental anomalies such as abnormal vascular development and hemorrhagic cotyledons have been reported. We have investigated the possible exchange of genetic material between somatic cell nuclear transfer cloned (SCNT) bovine fetuses and recipients at day 80 of gestation using mitochondrial DNA (mtDNA) as a marker. Twenty-three recovered SCNT-fetuses and their recipients were screened for divergent and thus informative mtDNA combinations. Twenty-one fetuses generated by in vitro fertilization (IVF) or multiple ovulation embryo transfer (MOET) and the corresponding recipients served as controls. A search for recipient mtDNA haplotype in DNA extracts from fetal blood by PCR-RFLP analysis revealed three cases of chimerism (two SCNT, one IVF) among a total of 19 informative fetus-recipient pairs (eight SCNT, seven IVF, four MOET). Placental anomalies have also been observed in some IVF fetuses and the present data therefore suggests transplacental leakage of cell components or cells from the recipient into some fetuses generated by in vitro techniques. Further studies are necessary to determine (i) the nature of leaked material, (ii) whether there is bi-directional leakage, and (iii) whether leaked material is present in recipients and calves after parturition, i.e. whether leakage takes place in vivo. If recipients were chimeric for DNA or cells derived from genetically modified SCNT (or IVF) embryos, their subsequent utilization might be affected.  相似文献   
92.
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.  相似文献   
93.
94.
A polyepitopic CD8(+)-T-cell response is thought to be critical for control of hepatitis C virus (HCV) infection. Using transgenic mice, we analyzed the immunogenicity and dominance of most known HLA-A2.1 epitopes presented during infection by using vaccines that carry the potential to enter clinical trials: peptides, DNA, and recombinant adenoviruses. The vaccines capacity to induce specific cytotoxic T lymphocytes and interferon gamma-producing cells revealed that immunogenic epitopes are clustered in specific antigens. For two key antigens, flanking regions were shown to greatly enhance the scope of epitope recognition, whereas a DNA-adenovirus prime-boost vaccination strategy augmented epitope immunogenicity, even that of subdominant ones. The present study reveals a clustered organization of HCV immunogenic HLA.A2.1 epitopes and strategies to modulate their dominance.  相似文献   
95.
The addition of N-linked glycans to a protein is catalyzed by oligosaccharyltransferase, an enzyme closely associated with the translocon. N-glycans are believed to be transferred as the protein is being synthesized and cotranslationally translocated in the lumen of the endoplasmic reticulum. We used a mannosylphosphoryldolichol-deficient Chinese hamster ovary mutant cell line (B3F7 cells) to study the temporal regulation of N-linked core glycosylation of hepatitis C virus envelope protein E1. In this cell line, truncated Glc(3)Man(5)GlcNAc(2) oligosaccharides are transferred onto nascent proteins. Pulse-chase analyses of E1 expressed in B3F7 cells show that the N-glycosylation sites of E1 are slowly occupied until up to 1 h after protein translation is completed. This posttranslational glycosylation of E1 indicates that the oligosaccharyltransferase has access to this protein in the lumen of the endoplasmic reticulum for at least 1 h after translation is completed. Comparisons with the N-glycosylation of other proteins expressed in B3F7 cells indicate that the posttranslational glycosylation of E1 is likely due to specific folding features of this acceptor protein.  相似文献   
96.
Although fed-batch suspension culture of animal cells continues to be of industrial importance for the large scale production of pharmaceutical products, existing control concepts are still insufficient. Changes in cell metabolism during cultivation and between similar cultivations, the complexity of the cell metabolism, and the lack of on-line state variables restrict the transfer of available control strategies established in bioprocess engineering. A process control strategy designed to achieve optimized process control must account for all these difficulties and fit sophisticated requirements toward adaptability and flexibility. The combination of a fed-batch process and an Open-Loop-Feedback-Optimal (OLFO) control provides a new approach for cell culture process control that couples an efficient cultivation concept to a capable process control strategy. The application of an adaptive, model-based OLFO controller to a hybridoma cultivation and experimental results are presented.  相似文献   
97.
Oligomerization of viral envelope proteins is essential to control virus assembly and fusion. The transmembrane domains (TMDs) of hepatitis C virus envelope glycoproteins E1 and E2 have been shown to play multiple functions during the biogenesis of E1E2 heterodimer. This makes them very unique among known transmembrane sequences. In this report, we used alanine scanning insertion mutagenesis in the TMDs of E1 and E2 to examine their role in the assembly of E1E2 heterodimer. Alanine insertion within the center of the TMDs of E1 or E2 or in the N-terminal part of the TMD of E1 dramatically reduced heterodimerization, demonstrating the essential role played by these domains in the assembly of hepatitis C virus envelope glycoproteins. To better understand the alanine scanning data obtained for the TMD of E1 which contains GXXXG motifs, we analyzed by circular dichroism and nuclear magnetic resonance the three-dimensional structure of the E1-(350-370) peptide encompassing the N-terminal sequence of the TMD of E1 involved in heterodimerization. Alanine scanning results and the three-dimensional molecular model we obtained provide the first framework for a molecular level understanding of the mechanism of hepatitis C virus envelope glycoprotein heterodimerization.  相似文献   
98.
Abstract: Neurotransmission requires rapid docking, fusion, and recycling of neurotransmitter vesicles. Several of the proteins involved in this complex Ca2+-regulated mechanism have been identified as substrates for protein kinases and phosphatases, e.g., the synapsins, synaptotagmin, rabphilin3A, synaptobrevin, munc18, MARCKS, dynamin I, and B-50/GAP-43. So far most attention has focused on the role of kinases in the release processes, but recent evidence indicates that phosphatases may be as important. Therefore, we investigated the role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in exocytosis and subsequent vesicle recycling. Calcineurin-neutralizing antibodies, which blocked dynamin I dephosphorylation by endogenous synaptosomal calcineurin activity, but had no effect on the activity of protein phosphatases 1 or 2A, were introduced into rat permeabilized nerve terminals and inhibited Ca2+-induced release of [3H]noradrenaline and neuropeptide cholecystokinin-8 in a specific and concentration-dependent manner. Our data show that the Ca2+/calmodulin-dependent phosphatase calcineurin plays an essential role in exocytosis and/or vesicle recycling of noradrenaline and cholecystokinin-8, transmitters stored in large dense-cored vesicles.  相似文献   
99.
The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively.In Advenella mimigardefordensis strain DPN7T (15, 42), three independent mutants with an insertion of Tn5::mob in the lpdA gene coding for the E3 component of the pyruvate dehydrogenase multi-enzyme complex revealed an interesting phenotype: these mutants were fully impaired in utilizing 3,3′-dithiodipropionic acid (DTDP) as the sole carbon and energy source, whereas the growth on no other tested carbon sources was affected (41). Our main interest in the catabolism of DTDP is to unravel the pathway and to identify the involved enzymes. Furthermore, the application of this disulfide as precursor substrate for biotechnological production of polythioesters (PTE) (22) is of interest. Since poly(3-mercaptopropionate) (PMP) biosynthesis depends hitherto on supplying the harmful thiol 3-mercaptopropionic acid (3MP) (35), an improvement of the recombinant Escherichia coli system by heterologous expression of enzymes capable of cleaving the less toxic DTDP symmetrically into two molecules of 3MP, which are then polymerized, could be an important achievement toward large-scale biotechnological production of PMP.Two different enzyme systems catalyzing the conversion of disulfides into the corresponding thiols are already known and have been described in detail. (i) Enzymes belonging to the well-characterized family of pyridine-nucleotide disulfide oxidoreductases (25) contain a redox center formed by a disulfide bridge coupled to a flavin ring. They catalyze a simultaneous two-electron transfer via the enzymatic active disulfides associated with the pyridine nucleotides and flavin, toward the substrate (39, 40). (ii) An alternative disulfide reduction is catalyzed by enzymes using iron-sulfur clusters to cleave of disulfide substrates in two one-electron reduction steps (37). The disrupted gene in A. mimigardefordensis was designated lpdAAm (EC 1.8.1.4), and it encodes a homodimeric flavoprotein, the dihydrolipoamide dehydrogenase LpdAAm (i.e., the E3 component of the pyruvate dehydrogenase multi-enzyme complex of A. mimigardefordensis strain DPN7T) belonging to the above-mentioned family of pyridine nucleotide-disulfide oxidoreductases. Enzymes of this class share high sequence and structural similarities and catalyze reduction of compounds which are linked by disulfide bonds (38). Alkylhydroperoxide reductases, coenzyme A disulfide reductases, glutathione reductases, mycothione reductases, thioredoxin reductases, and trypanothione reductases also, in addition to dihydrolipoamide dehydrogenases, belong to this family (3, 38). The physiological function of LpdAAm is most probably the conversion of lipoamide to dihydrolipoamide, but the reduction of DTDP into two molecules of 3MP (Fig. (Fig.1)1) is also predicted, enabling the first step in DTDP catabolism in A. mimigardefordensis strain DPN7T (41).Open in a separate windowFIG. 1.Reactions catalyzed by LpdAAm and PdhLRe. Presented are the enzymatic conversions of DTDP into two molecules of 3MP (A), lipoamide into dihydrolipoamide (B), and DTNB into two molecules of NTB (C). Abbreviations: DTDP, 3,3′-dithiodipropionic acid; 3MP, 3-mercaptopropionic acid; DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid); NTB, 2-nitro-5-thiobenzoic acid.Ralstonia eutropha H16 synthesizes copolymers of 3-hydroxybutyrate and 3MP, if 3MP (23) or DTDP (22) is supplied as a precursor in addition to a second utilizable carbon source. Although R. eutropha is not able to grow with DTDP as the sole carbon source, it must be capable of cleaving this organic disulfide symmetrically, because it synthesizes from it heteropolymers containing the resulting 3MP. Thus, R. eutropha must possess at least one gene encoding a DTDP-cleaving enzyme. Five genes coding for homologues of a dihydrolipoamide dehydrogenase (DHLDH), which in A. mimigardefordensis DPN7T is obviously involved in DTDP degradation, are known to exist in the genome of R. eutropha H16 (27; M. Raberg, J. Bechmann, U. Brandt, J. Schlüter, B. Uischner, and A. Steinbüchel, unpublished data). Therefore, LpdAAm and the five DHLDH paralogues of R. eutropha H16 were aligned and compared (Fig. (Fig.2).2). Subsequently, lpdAAm and the gene encoding the DHLDH belonging to the pyruvate dehydrogenase complex of R. eutropha H16 (pdhLRe) were cloned, heterologously expressed in Escherichia coli, purified, and assayed.Open in a separate windowFIG. 2.Phylogenetic relationships of the A. mimigardefordensis strain DPN7T LpdA (boldface), R. eutropha H16 PdhL (boldface), and homologues. The neighbor-joining plot was derived from a CLUSTAL X alignment of amino acid sequences closely related to LpdAAm. The amino acid sequence of the outer membrane protein P64K from Neisseria meningitidis was used as the outgroup. GenBank accession numbers are given in parentheses. Scale bar, 10% sequence divergence.  相似文献   
100.
Summary Intact and osmotically sensitive cells of Corynebacterium glutamicum can be efficiently transformed by electroporation. This was shown by using the plasmid vector pUL-330 (5.2 kb), containing the kanamycin resistance gene of transposon Tn5. The following electric parameters yielded efficient transformation. For intact cells: one exponentially decaying field pulse with time constants and with initial field intensities of E 0=35–40 kV cm-1; prepulse temperature 20°C. Cell regeneration (survival) was 100%–80%. Transformation efficiency can be increased by an additional freeze and thaw cycle of the cells, prior to electroporation. Lysozyme treated cells (osmotically sensitive) were transformed with three successive pulses of E 0=25–30 kV cm-1. Cell regeneration under these conditions was found to be 20–30%. The optimum yield of transformants/g plasmid-DNA was 3×103 for intact cells, 2×104 for intact cells which were frozen and thawed twice and 7×104 for osmotically sensitive cells if the cell suspension was pulsed at a cell density of 1–3×108/ml and at a DNA concentration of 0.2 g/ml up to 2 g/ml. The data obtained for osmotically sensitive cells suggest that the temperature increase accompanying the electric field pulse enhances colony formation and transformation efficiency if the initial prepulse temperature is 20°C, although regeneration of electroporated C. glutamicum cells starts to decrease at temperatures20°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号