全文获取类型
收费全文 | 1320篇 |
免费 | 121篇 |
国内免费 | 1篇 |
专业分类
1442篇 |
出版年
2024年 | 2篇 |
2023年 | 5篇 |
2022年 | 16篇 |
2021年 | 32篇 |
2020年 | 15篇 |
2019年 | 29篇 |
2018年 | 19篇 |
2017年 | 33篇 |
2016年 | 51篇 |
2015年 | 56篇 |
2014年 | 74篇 |
2013年 | 101篇 |
2012年 | 106篇 |
2011年 | 103篇 |
2010年 | 70篇 |
2009年 | 58篇 |
2008年 | 88篇 |
2007年 | 83篇 |
2006年 | 74篇 |
2005年 | 52篇 |
2004年 | 63篇 |
2003年 | 41篇 |
2002年 | 61篇 |
2001年 | 13篇 |
2000年 | 11篇 |
1999年 | 10篇 |
1998年 | 15篇 |
1997年 | 13篇 |
1996年 | 11篇 |
1995年 | 9篇 |
1994年 | 10篇 |
1993年 | 11篇 |
1992年 | 13篇 |
1991年 | 7篇 |
1990年 | 5篇 |
1989年 | 6篇 |
1988年 | 3篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 4篇 |
1984年 | 8篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1981年 | 6篇 |
1980年 | 6篇 |
1979年 | 3篇 |
1978年 | 6篇 |
1977年 | 6篇 |
1975年 | 2篇 |
1952年 | 3篇 |
排序方式: 共有1442条查询结果,搜索用时 15 毫秒
21.
Oliver Schwardt Hendrik Koliwer-Brandl Raphael Zimmerli Stefanie Mesch Gianluca Rossato Morena Spreafico Angelo Vedani Sørge Kelm Beat Ernst 《Bioorganic & medicinal chemistry》2010,18(20):7239-7251
Broad modifications of various positions of the minimal natural epitope recognized by the myelin-associated glycoprotein (MAG), a blocker of regeneration of neurite injuries, produced sialosides with nanomolar affinities. However, important pharmacokinetic issues, for example, the metabolic stability of these sialosides, remain to be addressed. For this reason, the novel non-carbohydrate mimic 3 was designed and synthesized from (?)-quinic acid. For the design of 3, previously identified beneficial modifications of side chains of Neu5Ac were combined with the replacement of the ring oxygen by a methylene group and the substitution of the C(4)-OH by an acetamide. Although docking experiments to a homology model of MAG revealed that mimic 3 forms all but one of the essential hydrogen bonds identified for the earlier reported lead 2, its affinity was substantially reduced. Extensive molecular-dynamics simulation disclosed that the missing hydrogen bond of the former C(8)-OH leads to a change of the orientation of the side chain. As a consequence, an important hydrophobic contact is compromised leading to a loss of affinity. 相似文献
22.
23.
Antonius Rohlmann Thomas Zander Friedmar Graichen Hendrik Schmidt Georg Bergmann 《PloS one》2014,9(4)
Cycling on an ergometer is an effective exercise for improving fitness. However, people with back problems or previous spinal surgery are often not aware of whether cycling could be harmful for them. To date, little information exists about spinal loads during cycling. A telemeterized vertebral body replacement allows in vivo measurement of implant loads during the activities of daily living. Five patients with a severe compression fracture of a lumbar vertebral body received these implants. During one measurement session, four of the participants exercised on a bicycle ergometer at various power levels. As the power level increased, the maximum resultant force and the difference between the maximum and minimum force (force range) during each pedal revolution increased. The average maximum-force increases between the two power levels 25 and 85 W were 73, 84, 225 and 75 N for the four patients. The corresponding increases in the force range during a pedal revolution were 84, 98, 166 and 101 N. There were large variations in the measured forces between the patients and also within the same patient, especially for high power levels. In two patients, the maximum forces during high-power cycling were higher than the forces during walking measured on the same day. Therefore, the authors conclude that patients with back problems should not cycle at high power levels shortly after surgery as a precaution. 相似文献
24.
Benedikt Kretner Akio Fukumori Peer‐Hendrik Kuhn Blanca Isabel Pérez‐Revuelta Stefan F. Lichtenthaler Christian Haass Harald Steiner 《Journal of neurochemistry》2013,125(1):144-156
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates. 相似文献
25.
Purification and characterization of dimethylsulfide monooxygenase from Hyphomicrobium sulfonivorans
Boden R Borodina E Wood AP Kelly DP Murrell JC Schäfer H 《Journal of bacteriology》2011,193(5):1250-1258
Dimethylsulfide (DMS) is a volatile organosulfur compound which has been implicated in the biogeochemical cycling of sulfur and in climate control. Microbial degradation is a major sink for DMS. DMS metabolism in some bacteria involves its oxidation by a DMS monooxygenase in the first step of the degradation pathway; however, this enzyme has remained uncharacterized until now. We have purified a DMS monooxygenase from Hyphomicrobium sulfonivorans, which was previously isolated from garden soil. The enzyme is a member of the flavin-linked monooxygenases of the luciferase family and is most closely related to nitrilotriacetate monooxygenases. It consists of two subunits: DmoA, a 53-kDa FMNH2-dependent monooxygenase, and DmoB, a 19-kDa NAD(P)H-dependent flavin oxidoreductase. Enzyme kinetics were investigated with a range of substrates and inhibitors. The enzyme had a Km of 17.2 (± 0.48) μM for DMS (kcat = 5.45 s−1) and a Vmax of 1.25 (± 0.01) μmol NADH oxidized min−1 (mg protein−1). It was inhibited by umbelliferone, 8-anilinonaphthalenesulfonate, a range of metal-chelating agents, and Hg2+, Cd2+, and Pb2+ ions. The purified enzyme had no activity with the substrates of related enzymes, including alkanesulfonates, aldehydes, nitrilotriacetate, or dibenzothiophenesulfone. The gene encoding the 53-kDa enzyme subunit has been cloned and matched to the enzyme subunit by mass spectrometry. DMS monooxygenase represents a new class of FMNH2-dependent monooxygenases, based on its specificity for dimethylsulfide and the molecular phylogeny of its predicted amino acid sequence. The gene encoding the large subunit of DMS monooxygenase is colocated with genes encoding putative flavin reductases, homologues of enzymes of inorganic and organic sulfur compound metabolism, and enzymes involved in riboflavin synthesis.Dimethylsulfide (DMS) is a volatile organosulfur compound, important in the biogeochemical cycling of sulfur and global climate regulation (4, 9). Bacterial metabolism of DMS is an important sink of the compound in nature and is thought to account for degradation of over 80% of the DMS produced in the marine environment. Although bacterial pathways of DMS degradation have been studied previously in Hyphomicrobium spp. and in Thiobacillus spp. (12, 36), they remain poorly characterized, and few enzymes of DMS metabolism have been purified (see reference 32). DMS monooxygenase was first reported from an assay of NADH-dependent oxygen uptake in the presence of DMS by cell extracts of Hyphomicrobium S (12), an activity also demonstrated in cell extracts of other Hyphomicrobium, Thiobacillus, and Arthrobacter isolates (6, 7, 34), with specific activities around 30 nmol NADH oxidized min−1 mg protein−1. The enzyme has not previously been purified or characterized.The aims of this study were to purify and characterize the DMS monooxygenase enzyme from a member of the genus Hyphomicrobium. Since Hyphomicrobium S is no longer available, studies were undertaken using the type strain of H. sulfonivorans. The strain was originally isolated from garden soil and grows on DMS, as well as the related compounds dimethyl sulfoxide (DMSO) and dimethylsulfone (DMSO2). During growth on DMSO2, H. sulfonivorans first reduces DMSO2 to DMSO by a dimethylsulfone reductase, and subsequently a DMSO reductase converts DMSO to DMS, which is further oxidized to methanethiol and formaldehyde by a DMS monooxygenase. Oxidation of methanethiol to formaldehyde by methanethiol oxidase yields another mole of formaldehyde, which is either assimilated into biomass or oxidized to carbon dioxide to provide reducing equivalents (Fig. (Fig.1).1). DMS monooxygenase activity is present in the soluble protein fraction during growth on these compounds (6, 7). A 53-kDa polypeptide was previously observed in organisms grown on DMS, DMSO, and DMSO2 (6, 7), but its significance in the metabolism of these compounds was unknown.Open in a separate windowFIG. 1.Pathway and enzymes of dimethylsulfone degradation in Hyphomicrobium sulfonivorans S1. Reduction of dimethylsulfone [DMSO2; (CH3)2SO2] to dimethyl sulfoxide [DMSO; (CH3)2SO] and further reduction of DMSO to dimethylsulfide provides the substrate for DMS monooxygenase. Formaldehyde is either assimilated (via the serine cycle) or oxidized to CO2 providing reducing equivalents. Sulfide is oxidized to sulfate; see reference 7 for further details. 相似文献
26.
Harpacticoida (Crustacea: Copepoda) of the South China Sea: faunistic and biogeographical analysis 总被引:1,自引:0,他引:1
Based on original and on published databases, a compendium of the Harpacticoida of the South China Sea is presented, and the distributional range of species is discussed. Up to now, a total of 77 harpacticoid species belonging to 57 genera and 19 families have been recorded in this region. Twenty of these species, collected in Nha-Trang Bay (Vietnam), have not hitherto been described. The most speciose families are the Miraciidae (20 species) and the Laophontidae (9 species). Thirteen families were represented by one to three species only and six families by four to seven species. A brief comparison is presented between the harpacticoid fauna of the South China Sea, the Philippine Islands, the inner Malayan Archipelago (Java, Flores, Banda, and Celebes Seas), New Guinea, the Yellow Sea, and the Andaman and Nicobar Islands. The overall similarity between the species lists of these areas was observed to be extremely low (average value of Simpson index is 0.15 ± 0.08). The lists of planktonic species from the different areas showed the highest similarity. The lowest similarity (highest endemism) was observed between the lists of interstitial species. It is likely that one of the factors determining the differences between the faunas is the poor knowledge about the composition and distribution of benthic harpacticoids in tropical latitudes. 相似文献
27.
Corinna Lieleg Philip Ketterer Johannes Nuebler Johanna Ludwigsen Ulrich Gerland Hendrik Dietz Felix Mueller-Planitz Philipp Korber 《Molecular and cellular biology》2015,35(9):1588-1605
Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms. 相似文献
28.
29.
Slx9p (Ygr081cp) is a nonessential yeast protein previously linked genetically with the DNA helicase Sgs1p. Here we report that Slx9p is involved in ribosome biogenesis in the yeast Saccharomyces cerevisiae. Deletion of SLX9 results in a mild growth defect and a reduction in the level of 18S rRNA. Co-immunoprecipitation experiments showed that Slx9p is associated with 35S, 23S, and 20S pre-rRNA, as well as U3 snoRNA and, thus, is a bona fide component of pre-ribosomes. The most striking effects on pre-rRNA processing resulting from deletion of SLX9 is the accumulation of the mutually exclusive 21S and 27SA2 pre-rRNA. Furthermore, deletion of SLX9 is synthetically lethal with mutations in Rrp5p that block cleavage at either site A2 or A3. We conclude that Slx9p has a unique role in the processing events responsible for separating the 66S and 43S pre-ribosomal particles. Interestingly, homologs of Slx9p were found only in other yeast species, indicating that the protein has been considerably less well conserved during evolution than the majority of trans-acting processing factors. 相似文献
30.
van der Linden AM Moorman C Cuppen E Korswagen HC Plasterk RH 《Current biology : CB》2003,13(6):516-521
The G(12) type of heterotrimeric G-proteins play an important role in development and behave as potent oncogenes in cultured cells. However, little is known about the molecular nature of the components that act in the G(12)-signaling pathway in an organism. We characterized a C. elegans Galpha subunit gene, gpa-12, which is a homolog of mammalian G(12)/G(13)alpha, and found that animals defective in gpa-12 are viable. Expression of activated GPA-12 (G(12)QL) results in a developmental growth arrest caused by a feeding behavior defect that is due to a dramatic reduction in pharyngeal pumping. To elucidate the molecular nature of the signaling pathways in which G(12) participates, we screened for suppressors of the G(12)QL phenotype. We isolated 50 suppressors that contain mutations in tpa-1, which encodes two protein kinase C isoforms, TPA-1A and TPA-1B, most similar to PKCtheta/delta. TPA-1 mediates the action of the tumor promoter PMA. Expression of G(12)QL and treatment of wild-type animals with PMA induce an identical growth arrest caused by inhibition of larval feeding, which is dependent on TPA-1A and TPA-1B function. These results suggest that TPA-1 is a downstream target of both G(12) signaling and PMA in modulating feeding and growth in C. elegans. Taken together, our findings provide a potential molecular mechanism for the transforming capability of G(12) proteins. 相似文献