首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2695篇
  免费   322篇
  2021年   27篇
  2020年   20篇
  2016年   38篇
  2015年   55篇
  2014年   65篇
  2013年   114篇
  2012年   102篇
  2011年   117篇
  2010年   85篇
  2009年   64篇
  2008年   79篇
  2007年   92篇
  2006年   91篇
  2005年   103篇
  2004年   81篇
  2003年   100篇
  2002年   87篇
  2001年   79篇
  2000年   89篇
  1999年   62篇
  1998年   33篇
  1997年   30篇
  1996年   31篇
  1995年   28篇
  1994年   26篇
  1993年   25篇
  1992年   52篇
  1991年   53篇
  1990年   66篇
  1989年   60篇
  1988年   55篇
  1987年   58篇
  1986年   38篇
  1985年   45篇
  1984年   68篇
  1983年   48篇
  1982年   28篇
  1981年   25篇
  1980年   28篇
  1979年   39篇
  1978年   30篇
  1977年   42篇
  1976年   33篇
  1975年   34篇
  1974年   24篇
  1973年   38篇
  1972年   30篇
  1970年   35篇
  1969年   27篇
  1968年   34篇
排序方式: 共有3017条查询结果,搜索用时 15 毫秒
111.
We have examined the effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on mitogen-stimulated growth and on c-myc proto-oncogene expression in a keratinocyte model of tumor progression. A dose-dependent inhibition of cell growth by 1,25-(OH)2D3 was demonstrated in both established (HPK1A) and malignant (HPK1A-ras) cells. However, this inhibition was observed with the addition of 1,25-(OH)2D3 at a higher concentration in HPK1A-ras cells than in HPK1A cells. Cell cycle analysis revealed a blockage of the normal progression of the cell cycle from G0 to S phase in the presence of 1,25-(OH)2D3. A higher concentration of 1,25-(OH)2D3 was required in HPK1A-ras cells to overcome the mitogen-stimulated progression into S phase, when compared with HPK1A cells. Analysis of c-myc messenger RNA revealed a strong inhibition of its expression at early time points with higher concentrations of 1,25-(OH)2D3 being required to obtain an inhibition in HPK1A-ras cells similar to that obtained in HPK1A cells. 1,25-(OH)2D3 receptor characterization by sucrose gradient analysis and equilibrium binding demonstrated the presence of a single 3.7 S protein with similar receptor numbers and affinity in both cell lines. These observations therefore demonstrate that an alteration of the growth inhibitory response to 1,25-(OH)2D3 occurs when keratinocytes acquire the malignant phenotype and suggest that the alteration lies beyond the interaction of the ligand with its receptor. In addition, relative resistance to 1,25-(OH)2D3 was also observed in the expression of the cell-cycle associated oncogene c-myc. These studies may therefore have important implications in vivo in the development and growth of epithelial cell cancers.  相似文献   
112.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   
113.
114.
Evidence based on optimal pH, thermal stability, and enzyme inhibition data suggests that the NADPH-dependent microsomal N-oxidation of the pyrrolizidine alkaloid senecionine is carried out largely by flavin-containing monooxygenase in guinea pig liver, lung, and kidney. In contrast, the hepatic microsomal conversion of senecionine to the pyrrole metabolite (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP) is catalyzed largely by cytochrome P450. However, the rate of senecionine N-oxide formation (detoxication) far exceeded the rate of DHP formation (activation) in guinea pig liver microsomes over a range of pHs (pH 6.8 to 9.8). In guinea pig lung and kidney microsomes, N-oxide was the major metabolite formed from senecionine with little or no production of DHP. The high rate of detoxication coupled with the low level of activation of senecionine in liver, lung, and kidney may help explain the apparent resistance of the guinea pig to intoxication by senecionine and other pyrrolizidine alkaloids.  相似文献   
115.
Studies were undertaken to determine the immunochemical relationship between constitutive trout cytochrome P450s and mammalian cytochrome P450IIIA enzymes. Polyclonal antibodies (IgG) generated against trout P450 LMC5 reacted strongly with P450IIIA1 in dexamethasone-induced rat liver microsomes and with P450IIIA4 in human liver microsomes in immunoblots. In contrast, rabbit anti-P450 LMC1 IgG did not recognize these proteins in rat and human liver microsomes. Reciprocal immunoblots using anti-rat P450IIIA1 showed that this antibody does not recognize trout P450 LMC1 or LMC5. However, anti-human P450IIIA4 IgG was found to cross react strongly with P450 LMC1 and LMC5. Progesterone 6 beta-hydroxylase activity of trout liver microsomes, a reaction catalyzed by P450 LMC5, was markedly inhibited by anti-P450IIIA4 and by gestodene, a mechanism-based inactivator of P450IIIA4. These results provide evidence for a close structural similarity between trout P450 LMC5 and human P450IIIA4.  相似文献   
116.
Mutants of Dictyostelium discoideum have been isolated by a selection for cells with temperature-sensitive defects in the maturation of glycoprotein N-linked oligosaccharides. Here we describe a mutant, HT7, which is unable to aggregate at the restrictive temperature, but which aggregates and makes fruiting bodies at the permissive temperature. HT7 shows normal early developmental intercellular cohesion, but is temperature sensitive for expression of the ethylenediamine-tetraacetic acid (EDTA)-resistant cohesion characteristic of aggregation. The mutant initiates aggregation, but forms only loose cell mounds which later disperse. Metabolic labelling studies indicate that the thermolabile defect is not in protein synthesis, assembly of the lipid-linked precursor of N-linked oligosaccharides or transfer of the precursor to proteins. However, the defect does prevent assembly of fully processed N-linked oligosaccharides. Further, two glycopeptides, obtained from exhaustive Pronase digests of wild-type plasma membrane glycoproteins, inhibit intercellular cohesion of aggregation-stage wild-type cells. HT7 produces only approximately 50% of the wild-type level of these glycopeptides at the restrictive temperature and one of the glycopeptides has reduced cohesion inhibition ability. A revertant of HT7 was found to aggregate normally, to have restored EDTA-resistant cohesion, to have normal profiles of N-linked oligosaccharides and to express the two cohesion-inhibiting glycopeptides normally. These data strongly support a model in which cohesion during late aggregation is at least in part due to recognition between surface glycans and receptors on neighbouring cells.  相似文献   
117.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   
118.
Using chronically instrumented awake tracheotomized dogs, we examined the contributions of vagal feedback to respiratory muscle activities, both electrical and mechanical, during normoxic hypercapnia (inspired CO2 fraction = 0.03, 0.04, 0.05, and 0.06) and during mild treadmill exercise (3, 4.3, and 6.4 km/h). Cooling exteriorized vagal loops eliminated both phasic and tonic mechanoreceptor input during either of these hyperpneas. At a given chemical or locomotor stimulus, vagal cooling caused a further increase in costal, crural, parasternal, and rib cage expiratory (triangularis sterni) muscles. No further change in abdominal expiratory muscle activity occurred secondary to vagal cooling during these hyperpneas. However, removal of mechanoreceptor input during hypercapnia was not associated with consistent changes in end-expiratory lung volume, as measured by the He-N2 rebreathe technique. We conclude that during these hyperpneas 1) vagal input is not essential for augmentation of expiratory muscle activity and 2) decrements in abdominal expiratory muscle activity may be offset by increments in rib cage expiratory muscle activity and contribute to the regulation of end-expiratory lung volume.  相似文献   
119.
120.
Effect of ascorbic acid deficiency on the in vivo synthesis of carnitine   总被引:1,自引:0,他引:1  
The effects of ascorbate deficiency on carnitine biosynthesis was investigated in young male guinea pigs. Liver and kidney carnitine levels were not affected by the deficiency, but scorbutic animals had 50% less carnitine in heart and skeletal muscle than control animals. Labeled carnitine precursors, 6-N-tri-methyl-L-lysine and 4-N-trimethylaminobutyrate, both of which require ascorbate for their enzymatic hydroxylation, were injected into the vena cava of control, pair-fed and scorbutic animals. The distribution of isotope in compounds present in the liver and kidney after 1 h was determined. The uptake of trimethyllysine by the liver was less than 2% in 1 h, while the kidney took up approx. 20% of the 14C. Control and pair-fed animals converted trimethyllysine to kidney trimethylaminobutyrate 8--10 times as well as did scorbutic animals. Trimethylaminobutyrate hydroxylase, present in the liver but almost absent from the kidney, converted nearly all of substrate taken up by the liver to carnitine in both the scorbutic and control animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号