首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2771篇
  免费   330篇
  3101篇
  2021年   27篇
  2020年   20篇
  2016年   37篇
  2015年   61篇
  2014年   67篇
  2013年   121篇
  2012年   104篇
  2011年   123篇
  2010年   89篇
  2009年   71篇
  2008年   87篇
  2007年   99篇
  2006年   93篇
  2005年   107篇
  2004年   88篇
  2003年   101篇
  2002年   89篇
  2001年   80篇
  2000年   91篇
  1999年   63篇
  1998年   35篇
  1997年   29篇
  1996年   32篇
  1995年   28篇
  1994年   28篇
  1993年   25篇
  1992年   52篇
  1991年   53篇
  1990年   67篇
  1989年   61篇
  1988年   56篇
  1987年   58篇
  1986年   38篇
  1985年   46篇
  1984年   67篇
  1983年   49篇
  1982年   28篇
  1981年   26篇
  1980年   26篇
  1979年   39篇
  1978年   29篇
  1977年   43篇
  1976年   33篇
  1975年   34篇
  1974年   24篇
  1973年   38篇
  1972年   30篇
  1970年   35篇
  1969年   27篇
  1968年   34篇
排序方式: 共有3101条查询结果,搜索用时 15 毫秒
91.
92.
Evidence based on optimal pH, thermal stability, and enzyme inhibition data suggests that the NADPH-dependent microsomal N-oxidation of the pyrrolizidine alkaloid senecionine is carried out largely by flavin-containing monooxygenase in guinea pig liver, lung, and kidney. In contrast, the hepatic microsomal conversion of senecionine to the pyrrole metabolite (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP) is catalyzed largely by cytochrome P450. However, the rate of senecionine N-oxide formation (detoxication) far exceeded the rate of DHP formation (activation) in guinea pig liver microsomes over a range of pHs (pH 6.8 to 9.8). In guinea pig lung and kidney microsomes, N-oxide was the major metabolite formed from senecionine with little or no production of DHP. The high rate of detoxication coupled with the low level of activation of senecionine in liver, lung, and kidney may help explain the apparent resistance of the guinea pig to intoxication by senecionine and other pyrrolizidine alkaloids.  相似文献   
93.
Mutants of Dictyostelium discoideum have been isolated by a selection for cells with temperature-sensitive defects in the maturation of glycoprotein N-linked oligosaccharides. Here we describe a mutant, HT7, which is unable to aggregate at the restrictive temperature, but which aggregates and makes fruiting bodies at the permissive temperature. HT7 shows normal early developmental intercellular cohesion, but is temperature sensitive for expression of the ethylenediamine-tetraacetic acid (EDTA)-resistant cohesion characteristic of aggregation. The mutant initiates aggregation, but forms only loose cell mounds which later disperse. Metabolic labelling studies indicate that the thermolabile defect is not in protein synthesis, assembly of the lipid-linked precursor of N-linked oligosaccharides or transfer of the precursor to proteins. However, the defect does prevent assembly of fully processed N-linked oligosaccharides. Further, two glycopeptides, obtained from exhaustive Pronase digests of wild-type plasma membrane glycoproteins, inhibit intercellular cohesion of aggregation-stage wild-type cells. HT7 produces only approximately 50% of the wild-type level of these glycopeptides at the restrictive temperature and one of the glycopeptides has reduced cohesion inhibition ability. A revertant of HT7 was found to aggregate normally, to have restored EDTA-resistant cohesion, to have normal profiles of N-linked oligosaccharides and to express the two cohesion-inhibiting glycopeptides normally. These data strongly support a model in which cohesion during late aggregation is at least in part due to recognition between surface glycans and receptors on neighbouring cells.  相似文献   
94.
We examined the effects of reversible vagal cooling on respiratory muscle activities in awake chronically instrumented tracheotomized dogs. We specifically analyzed electromyographic (EMG) activity and its ventilatory correlates, end-expiratory lung volume (EELV) and diaphragmatic resting length via sonomicrometry. Elimination of phasic and tonic mechanoreceptor activity by vagal cooling doubled the EMG activity of the costal, crural, and parasternal muscles, with activation occurring sooner relative to the onset of inspiratory flow. Diaphragmatic postinspiration inspiratory activity in the intact dog coincided with a brief mechanical shortening of the diaphragm during early expiration; vagal blockade removed both the electrical activity and the mechanical shortening. Vagal blockade also doubled the EMG activity of a rib cage expiratory muscle, the triangularis sterni, but reduced that of an abdominal expiratory muscle, the transversus abdominis. Within-breath electrical activity of both muscles occurred sooner relative to the onset of expiratory flow during vagal blockade. Vagal cooling was also associated with a 12% increase in EELV and a 5% decrease in end-expiratory resting length of the diaphragm. We conclude that vagal input significantly modulates inspiratory and expiratory muscle activities, which help regulate EELV efficiently and optimize diaphragmatic length during eupneic breathing in the awake dog.  相似文献   
95.
Using chronically instrumented awake tracheotomized dogs, we examined the contributions of vagal feedback to respiratory muscle activities, both electrical and mechanical, during normoxic hypercapnia (inspired CO2 fraction = 0.03, 0.04, 0.05, and 0.06) and during mild treadmill exercise (3, 4.3, and 6.4 km/h). Cooling exteriorized vagal loops eliminated both phasic and tonic mechanoreceptor input during either of these hyperpneas. At a given chemical or locomotor stimulus, vagal cooling caused a further increase in costal, crural, parasternal, and rib cage expiratory (triangularis sterni) muscles. No further change in abdominal expiratory muscle activity occurred secondary to vagal cooling during these hyperpneas. However, removal of mechanoreceptor input during hypercapnia was not associated with consistent changes in end-expiratory lung volume, as measured by the He-N2 rebreathe technique. We conclude that during these hyperpneas 1) vagal input is not essential for augmentation of expiratory muscle activity and 2) decrements in abdominal expiratory muscle activity may be offset by increments in rib cage expiratory muscle activity and contribute to the regulation of end-expiratory lung volume.  相似文献   
96.
97.
Effect of ascorbic acid deficiency on the in vivo synthesis of carnitine   总被引:1,自引:0,他引:1  
The effects of ascorbate deficiency on carnitine biosynthesis was investigated in young male guinea pigs. Liver and kidney carnitine levels were not affected by the deficiency, but scorbutic animals had 50% less carnitine in heart and skeletal muscle than control animals. Labeled carnitine precursors, 6-N-tri-methyl-L-lysine and 4-N-trimethylaminobutyrate, both of which require ascorbate for their enzymatic hydroxylation, were injected into the vena cava of control, pair-fed and scorbutic animals. The distribution of isotope in compounds present in the liver and kidney after 1 h was determined. The uptake of trimethyllysine by the liver was less than 2% in 1 h, while the kidney took up approx. 20% of the 14C. Control and pair-fed animals converted trimethyllysine to kidney trimethylaminobutyrate 8--10 times as well as did scorbutic animals. Trimethylaminobutyrate hydroxylase, present in the liver but almost absent from the kidney, converted nearly all of substrate taken up by the liver to carnitine in both the scorbutic and control animals.  相似文献   
98.
99.
Hybridization in situ was used to identify rDNA in chromosomes of the pygmy chimpanzee, mountain gorilla, and siamang gibbon. In contrast to other Pongids, and man, the gorilla has only two pairs of rDNA-containing chromosomes. The single pair in the siamang bears no resemblance to the nucleolar chromosome of the closely related lar gibbon. Pan paniscus and P. troglodytes have the same rDNA distribution, and similar karyotypes except in the structure of chromosome 23p. Grain counts over unbanded preparations show that the human, orangutan, and both chimpanzees have about the same total rDNA multiplicity.  相似文献   
100.
Ehrlich ascites tumor cells containing radioactive ATP were incubated in vitro with a range of concentrations of 2-deoxyglucose in order to produce different rates of ATP catabolism. Concentrations of all radioactive products of ATP catabolism were measured, and apparent rates of adenylate deaminase and inosinate dehydrogenase and of adenylate and inosinate dephosphorylation were calculated. It was concluded that these processes were reggulated primarily by the rate of formation of substrate, and to a lesser extent in some cases, by substrate concentration. No evidence was obtained for regulation of these processes by the concentration of ATP. The deoxyglucose-induced catabolism of radioactive GTP was also studied. When ATP catabolism was induced by incubation with 2,4-dinitrophenol, time courses of accumulation of purine nucleoside monophosphates and rates of alternative pathways of their metabolism were quite different than when deoxyglucose was used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号