首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   7篇
  37篇
  2023年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1993年   1篇
  1987年   2篇
  1983年   1篇
  1978年   1篇
排序方式: 共有37条查询结果,搜索用时 24 毫秒
31.

Background  

Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis.  相似文献   
32.
We delineated acetylcholine (ACh)-dependent conformational changes in a prototype of the nicotinic receptor ligand binding domain by molecular dynamics simulation and changes in intrinsic tryptophan (Trp) fluorescence. Prolonged molecular dynamics simulation of ACh-binding protein showed that binding of ACh establishes close register of Trps from adjacent subunits, Trp(143) and Trp(53), and draws the peripheral C-loop inward to occlude the entrance to the binding cavity. Close register of Trp(143) and Trp(53) was demonstrated by ACh-mediated quenching of intrinsic Trp fluorescence, elimination of quenching by mutation of one or both Trps to Phe, and decreased lifetime of Trp fluorescence by bound ACh. Occlusion of the binding cavity by the C-loop was demonstrated by restricted access of an extrinsic quencher of binding site Trp fluorescence by ACh. The collective findings showed that ACh initially establishes close register of conserved Trps from adjacent subunits and then draws the C-loop inward to occlude the entrance to the binding cavity.  相似文献   
33.
During implantation the embryo attaches to the endometrial surface and trophoblast traverses the uterine epithelium, anchoring in the uterine connective tissue. To determine whether trophoblast can facilitate invasion of the uterus by degrading components of normal uterine extracellular matrix, mouse blastocysts were cultured on a radio-labeled extracellular matrix that contained glycoproteins, elastin, and collagen. The embryos attached to the matrix, and trophoblast spread over the surface. Starting on day 5 of culture there was a release of labeled peptides into the medium. The radioactive peptides released from the matrix by the embryos had molecular weights ranging from more than 25,000 to more than 200. By day 7 there were areas where individual trophoblast cells had separated from one another, revealing the underlying substratum that was cleared of matrix. When trophoblast cells were lysed with NH(4)OH on day 8, it was apparent that the area underneath the trophoblast outgrowth had been cleared of matrix. Scanning electron microscopy and time-lapse cinemicrography confirmed that the digestion of matrix was highly localized, taking place only underneath the trophoblast, with no evidence of digestion of the matrix beyond the periphery of the trophoblast outgrowth. The sharp boundaries of degredation observed may be due to localized proteinase secretion by trophoblast, to membrane proteinases on the surface of trophoblast, or to endocytosis. Digestion of the matrix was not dependent on plasminogen, thus ruling out a role for plasminogen activator. Digestion was not inhibited by a variety of hormones and inhibitors, including progesterone, 17β-estradiol, leupeptin, EDTA, colchicine, NH(4)Cl, or ε-aminocaproic acid. This system of culturing embryos on extracellular matrix may be useful in determining the processes that regulate trophoblast migration and invasion into the maternal tissues during implantation.0  相似文献   
34.

Background  

Elevated non-esterified fatty acids (NEFA) concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL), 105 and 135 days gestational age (dGA, term 147+/- 3 days).  相似文献   
35.
The prediction of absolute ligand-receptor binding affinities is essential in a wide range of biophysical queries, from the study of protein-protein interactions to structure-based drug design. End-point free energy methods, such as the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) model, have received much attention and widespread application in recent literature. These methods benefit from computational efficiency as only the initial and final states of the system are evaluated, yet there remains a need for strengthening their theoretical foundation. Here a clear connection between statistical thermodynamics and end-point free energy models is presented. The importance of the association free energy, arising from one molecule's loss of translational and rotational freedom from the standard state concentration, is addressed. A novel method for calculating this quantity directly from a molecular dynamics simulation is described. The challenges of accounting for changes in the protein conformation and its fluctuations from separate simulations are discussed. A simple first-order approximation of the configuration integral is presented to lay the groundwork for future efforts. This model has been applied to FKBP12, a small immunophilin that has been widely studied in the drug industry for its potential immunosuppressive and neuroregenerative effects.  相似文献   
36.
Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas emitted from terrestrial and aquatic ecosystems. It can be transformed to nitrogen gas (N2) by bacteria and archaea harboring the N2O reductase (N2OR), which is the only known N2O sink in the biosphere. Despite its crucial role in mitigating N2O emissions, knowledge of the N2OR in the environment remains limited. Here, we report a comprehensive phylogenetic analysis of the nosZ gene coding the N2OR in genomes retrieved from public databases. The resulting phylogeny revealed two distinct clades of nosZ, with one unaccounted for in studies investigating N2O-reducing communities. Examination of N2OR structural elements not considered in the phylogeny revealed that the two clades differ in their signal peptides, indicating differences in the translocation pathway of the N2OR across the membrane. Sequencing of environmental clones of the previously undetected nosZ lineage in various environments showed that it is widespread and diverse. Using quantitative PCR, we demonstrate that this clade was most often at least as abundant as the other, thereby more than doubling the known extent of the overall N2O-reducing community in the environment. Furthermore, we observed that the relative abundance of nosZ from either clade varied among habitat types and environmental conditions. Our results indicate a physiological dichotomy in the diversity of N2O-reducing microorganisms, which might be of importance for understanding the relationship between the diversity of N2O-reducing microorganisms and N2O reduction in different ecosystems.  相似文献   
37.
The total free energy of a hydrated biomolecule and its corresponding decomposition of energy and entropy provides detailed information about regions of thermodynamic stability or instability. The free energies of four hydrated globular proteins with different net charges are calculated from a molecular dynamics simulation, with the energy coming from the system Hamiltonian and entropy using multiscale cell correlation. Water is found to be most stable around anionic residues, intermediate around cationic and polar residues, and least stable near hydrophobic residues, especially when more buried, with stability displaying moderate entropy-enthalpy compensation. Conversely, anionic residues in the proteins are energetically destabilized relative to singly solvated amino acids, while trends for other residues are less clear-cut. Almost all residues lose intraresidue entropy when in the protein, enthalpy changes are negative on average but may be positive or negative, and the resulting overall stability is moderate for some proteins and negligible for others. The free energy of water around single amino acids is found to closely match existing hydrophobicity scales. Regarding the effect of secondary structure, water is slightly more stable around loops, of intermediate stability around β strands and turns, and least stable around helices. An interesting asymmetry observed is that cationic residues stabilize a residue when bonded to its N-terminal side but destabilize it when on the C-terminal side, with a weaker reversed trend for anionic residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号