首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11141篇
  免费   942篇
  国内免费   1584篇
  2024年   40篇
  2023年   199篇
  2022年   433篇
  2021年   693篇
  2020年   522篇
  2019年   626篇
  2018年   504篇
  2017年   394篇
  2016年   521篇
  2015年   746篇
  2014年   886篇
  2013年   884篇
  2012年   1094篇
  2011年   945篇
  2010年   558篇
  2009年   506篇
  2008年   613篇
  2007年   462篇
  2006年   442篇
  2005年   389篇
  2004年   367篇
  2003年   273篇
  2002年   257篇
  2001年   203篇
  2000年   172篇
  1999年   153篇
  1998年   117篇
  1997年   96篇
  1996年   70篇
  1995年   90篇
  1994年   59篇
  1993年   50篇
  1992年   52篇
  1991年   42篇
  1990年   39篇
  1989年   46篇
  1988年   25篇
  1987年   22篇
  1986年   16篇
  1985年   20篇
  1984年   13篇
  1983年   15篇
  1982年   8篇
  1981年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 656 毫秒
991.
Norisoboldine (NOR), the primary isoquinoline alkaloid constituent of the root of Lindera aggregata, has previously been demonstrated to attenuate osteoclast (OC) differentiation. Accumulative evidence has shown that aryl hydrocarbon receptor (AhR) plays an important role in regulating the differentiation of various cells, and multiple isoquinoline alkaloids can modulate AhR. In the present study, we explored the role of NOR in the AhR signaling pathway. These data showed that the combination of AhR antagonist resveratrol (Res) or α-naphthoflavone (α-NF) nearly reversed the inhibition of OC differentiation through NOR. NOR could stably bind to AhR, up-regulate the nuclear translocation of AhR, and enhance the accumulation of the AhR-ARNT complex, AhR-mediated reporter gene activity and CYP1A1 expression in RAW 264.7 cells, suggesting that NOR might be an agonist of AhR. Moreover, NOR inhibited the nuclear translocation of NF-κB-p65, resulting in the evident accumulation of the AhR-NF-κB-p65 complex, which could be markedly inhibited through either Res or α-NF. Although NOR only slightly affected the expression of HIF-1α, NOR markedly reduced VEGF mRNA expression and ARNT-HIF-1α complex accumulation. In vivo studies indicated that NOR decreased the number of OCs and ameliorated the bone erosion in the joints of rats with collagen-induced arthritis, accompanied by the up-regulation of CYP1A1 and the down-regulation of VEGF mRNA expression in the synovium of rats. A combination of α-NF nearly completely reversed the effects of NOR. In conclusion, NOR attenuated OC differentiation and bone erosion through the activation of AhR and the subsequent inhibition of both NF-κB and HIF pathways.  相似文献   
992.
993.
Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.‐specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea‐specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea‐specific in transgenic wheat. Single‐floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography–mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB‐susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real‐time PCR analysis revealed that the tissue‐specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue‐specific and pathogen‐inducible expression of this Fusarium‐specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain.  相似文献   
994.
995.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   
996.

Background

The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.

Results

A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).

Conclusions

The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users.  相似文献   
997.
998.
999.
The nuage is a germline-specific perinuclear structure that remains functionally elusive. Recently, the nuage in Drosophila was shown to contain two of the three PIWI proteins - Aubergine and Argonaute 3 (AGO3) - that are essential for germline development. The PIWI proteins bind to PIWI-interacting RNAs (piRNAs) and function in epigenetic regulation and transposon control. Here, we report a novel nuage component, PAPI (Partner of PIWIs), that contains a TUDOR domain and interacts with all three PIWI proteins via symmetrically dimethylated arginine residues in their N-terminal domain. In adult ovaries, PAPI is mainly cytoplasmic and enriched in the nuage, where it partially colocalizes with AGO3. The localization of PAPI to the nuage does not require the arginine methyltransferase dPRMT5 or AGO3. However, AGO3 is largely delocalized from the nuage and becomes destabilized in the absence of PAPI or dPRMT5, indicating that PAPI recruits PIWI proteins to the nuage to assemble piRNA pathway components. As expected, papi deficiency leads to transposon activation, phenocopying piRNA mutants. This further suggests that PAPI is involved in the piRNA pathway for transposon silencing. Moreover, AGO3 and PAPI associate with the P body component TRAL/ME31B complex in the nuage and transposon activation is observed in tral mutant ovaries. This suggests a physical and functional interaction in the nuage between the piRNA pathway components and the mRNA-degrading P-body components in transposon silencing. Overall, our study reveals a function of the nuage in safeguarding the germline genome against deleterious retrotransposition via the piRNA pathway.  相似文献   
1000.
Antiangiogenic therapy mediated by food components is an established strategy for cancer chemoprevention. Growth factors play critical roles in tumor angiogenesis. A conditioned medium containing growth factors from human gastric adenocarcinoma SGC-7901 cell conditioned medium was used as an angiogenic stimulus in this study. The purpose of this study was to evaluate the inhibitory effect and possible mechanism of γ-tocotrienol on tumor angiogenesis. The results showed that γ-tocotrienol (10-40 μmol/L) significantly suppressed proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) induced by SGC-7901 cell conditioned medium in a dose-dependent manner. γ-Tocotrienol (800-1200 μg/egg) also inhibited new blood vessel formation on the growing chick embryo chorioallantoic membrane in a dose-dependent manner. Moreover, the inhibitory effects of γ-tocotrienol on HUVECs were correlated with inducing the apoptosis and arresting cell cycle at the G0/G1 phase at a dose of 40 μmol/L γ-tocotrienol. In addition, γ-tocotrienol inhibited angiogenesis in HUVECs by down-regulation of β-catenin, cyclin D1, CD44, phospho-VEGFR-2 and MMP-9. The antiangiogenic effects of γ-tocotrienol on HUVECs may be attributable to regulation of Wnt signaling by decreasing β-catenin expression. Thus, our results suggest that γ-tocotrienol has a potential chemopreventive agent via antiangiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号