首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   16篇
  412篇
  2023年   4篇
  2021年   14篇
  2020年   4篇
  2019年   10篇
  2018年   12篇
  2017年   11篇
  2016年   25篇
  2015年   22篇
  2014年   30篇
  2013年   38篇
  2012年   43篇
  2011年   35篇
  2010年   17篇
  2009年   14篇
  2008年   25篇
  2007年   24篇
  2006年   25篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
51.
52.
Varma H  Skildum AJ  Conrad SE 《PloS one》2007,2(12):e1256
Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb) family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT), and cdk activity was inhibited using the cdk inhibitors p16(INK4A) and p21(Waf1/Cip1). Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.  相似文献   
53.
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.  相似文献   
54.
Thirty five bacterial isolates from diverse environmental sources such as contaminated food, nitrogen rich soil, activated sludges from pesticide and oil refineries effluent treatment plants were found to belong to Bacillus, Bordetella, Enterobacter, Proteus, and Pseudomonas sp. on the basis of 16S rRNA gene sequence analysis. Under dark fermentative conditions, maximum hydrogen (H2) yields (mol/mol of glucose added) were recorded to be 0.68 with Enterobacter aerogenes EGU16 followed by 0.63 with Bacillus cereus EGU43 and Bacillus thuringiensis EGU45. H2 constituted 63–69% of the total biogas evolved. Out of these 35 microbes, 18 isolates had the ability to produce polyhydroxybutyrate (PHB), which varied up to 500 mg/l of medium, equivalent to a yield of 66.6%. The highest PHB yield was recorded with B. cereus strain EGU3. Nine strains had high hydrolytic activities (zone of hydrolysis): lipase (34–38 mm) – Bacillus sphaericus strains EGU385, EGU399 and EGU542; protease (56–62 mm) – Bacillus sp. strains EGU444, EGU447 and EGU445; amylase (23 mm) – B. thuringiensis EGU378, marine bacterium strain EGU409 and Pseudomonas sp. strain EGU448. These strains with high hydrolytic activities had relatively low H2 producing abilities in the range of 0.26–0.42 mol/mol of glucose added and only B. thuringiensis strain EGU378 had the ability to produce PHB. This is the first report among the non-photosynthetic microbes, where the same organism(s) – B. cereus strain EGU43 and B. thuringiensis strain EGU45, have been shown to produce H2 – 0.63 mol/mol of glucose added and PHB – 420–435 mg/l medium.  相似文献   
55.
Plasma lipidome is now increasingly recognized as a potentially important marker of chronic diseases, but the exact extent of its contribution to the interindividual phenotypic variability in family studies is unknown. Here, we used the rich data from the ongoing San Antonio Family Heart Study (SAFHS) and developed a novel statistical approach to quantify the independent and additive value of the plasma lipidome in explaining metabolic syndrome (MS) variability in Mexican American families recruited in the SAFHS. Our analytical approach included two preprocessing steps: principal components analysis of the high-resolution plasma lipidomics data and construction of a subject-subject lipidomic similarity matrix. We then used the Sequential Oligogenic Linkage Analysis Routines software to model the complex family relationships, lipidomic similarities, and other important covariates in a variance components framework. Our results suggested that even after accounting for the shared genetic influences, indicators of lipemic status (total serum cholesterol, TGs, and HDL cholesterol), and obesity, the plasma lipidome independently explained 22% of variability in the homeostatic model of assessment-insulin resistance trait and 16% to 22% variability in glucose, insulin, and waist circumference. Our results demonstrate that plasma lipidomic studies can additively contribute to an understanding of the interindividual variability in MS.  相似文献   
56.
Li T  Hawkes C  Qureshi HY  Kar S  Paudel HK 《Biochemistry》2006,45(10):3134-3145
In the preceding paper, we showed that GSK3beta phosphorylates tau at S(202), T(231), S(396), and S(400) in vivo. Phosphorylation of S(202) occurs without priming. Phosphorylation of T(231), on the other hand, requires priming phosphorylation of S(235). Similarly, priming phosphorylation of S(404) is essential for the sequential phosphorylation of S(400) and S(396) by GSK3beta. The priming kinase that phosphorylates tau at S(235) and S(404) in the brain is not known. In this study, we find that in HEK-293 cells cotransfected with tau, GSK3beta, and Cdk5, Cdk5 phosphorylates tau at S(202), S(235), and S(404). S(235) phosphorylation enhances GSK3beta-catalyzed T(231) phosphorylation. Similarly, Cdk5 by phosphorylating S(404) stimulates phosphorylation of S(400) and S(396) by GSK3beta. These data indicate that Cdk5 primes tau for GSK3beta in intact cells. To evaluate if Cdk5 primes tau for GSK3beta in mammalian brain, we examined localizations of Cdk5, tau, and GSK3beta in rat brain. We also analyzed the interaction of Cdk5 with tau and GSK3beta in brain microtubules. We found that Cdk5, GSK3beta, and tau are virtually colocalized in rat brain cortex. When bovine brain microtubules are analyzed by FPLC gel filtration, Cdk5, GSK3beta, and tau coelute within an approximately 450 kDa complex. From the fractions containing the approximately 450 kDa complex, tau, Cdk5, and GSK3beta co-immunoprecipitate with each other. In HEK-293 cells transfected with tau, Cdk5, and GSK3beta in different combinations, tau binds to Cdk5 in a manner independent of GSK3beta and to GSK3beta in a manner independent of Cdk5. However, Cdk5 and GSK3beta bind to each other only in the presence of tau, suggesting that tau connects Cdk5 and GSK3beta. Our results suggest that in the brain, tau, Cdk5, and GSK3beta are components of an approximately 450 kDa complex. Within the complex, Cdk5 phosphorylates tau at S(235) and primes it for phosphorylation of T(231) by GSK3beta. Similarly, Cdk5 by phosphorylating tau at S(404) primes tau for a sequential phosphorylation of S(400) and S(396) by GSK3beta.  相似文献   
57.
Summary The influence of various polyols on the thermostability of pullulan-hydrolysing activity fromSclerotium rolfsii was studied. The half-life of the enzyme activity at 60°C was determined to be of the order of 30 min. In the presence of xylitol and sorbitol (3 M or more) there was a significant enhancement in the thermostability of the enzyme with retention of 100% activity after incubation for 7 h at 60°C. However, ethylene glycol and glycerol were found to have no protective effect. The stabilizing efficiency was found to be dependent on the concentration of the polyhydric alcohol used and the number of OH-groups present per molecule.  相似文献   
58.
When two or more populations have been separated by geographic or cultural boundaries for many generations, drift, spontaneous mutations, differential selection pressures and other factors may lead to allele frequency differences among populations. If these 'parental' populations subsequently come together and begin inter-mating, disequilibrium among linked markers may span a greater genetic distance than it typically does among populations under panmixia [see glossary]. This extended disequilibrium can make association studies highly effective and more economical than disequilibrium mapping in panmictic populations since less marker loci are needed to detect regions of the genome that harbor phenotype-influencing loci. However, under some circumstances, this process of intermating (as well as other processes) can produce disequilibrium between pairs of unlinked loci and thus create the possibility of confounding or spurious associations due to this population stratification. Accordingly, researchers are advised to employ valid statistical tests for linkage disequilibrium mapping allowing conduct of genetic association studies that control for such confounding. Many recent papers have addressed this need. We provide a comprehensive review of advances made in recent years in correcting for population stratification and then evaluate and synthesize these methods based on statistical principles such as (1) randomization, (2) conditioning on sufficient statistics, and (3) identifying whether the method is based on testing the genotype-phenotype covariance (conditional upon familial information) and/or testing departures of the marginal distribution from the expected genotypic frequencies.  相似文献   
59.

Current scenario in communicable diseases has generated new era that identifies the “One health” approach to understand the sharing and management of etiological agents with its impact on ecosystem. Under this context the relevance of zoonotic diseases generates major concern. The indiscriminate and higher use of antibiotics in animal husbandry creates substantial pressure on the gut microbiome for development of resistance due to shorter generation time and high density. Thus, gut works as a bioreactor for the breeding of ARBs in this scenario and are continuously released in different niches. These ARBs transfer resistance genes among native flora through horizontal gene transfer events, vectors and quorum sensing. About 60% of infectious diseases in human are caused by zoonotic pathogens have potential to carry ARGs which could be transmitted to humans. The well documented zoonotic diseases are anthrax cause by Bacillus anthracis, bovine tuberculosis by Mycobacterium tuberculosis, brucellosis by Brucella abortus, and hemorrhagic colitis by Escherichia coli. Similarly, most of the antibiotics are not completely metabolized and released in unmetabolized forms which enters the food chain and affect various ecological niches through bioaccumulation. The persistence period of antibiotics ranges from?<?1 to 3466 days in environment. The consequences of misusing the antibiotic in livestock and their fate in various ecological niches have been discussed in this review. Further the light sheds on antibiotics persistence and it biodegradation through different abiotic and biotic approaches in environment. The knowledge on personnel hygiene and strong surveillance system for zoonotic disease including ARBs transmission, prevention and control measures should be established to regulate the spread of AMR in the environment and subsequently to the human being through a food web.

  相似文献   
60.
Understanding protein-protein interactions that occur between ACP and KS domains of polyketide synthases and fatty acid synthases is critical to improving the scope and efficiency of combinatorial biosynthesis efforts aimed at producing non-natural polyketides. Here, we report a facile strategy for rapidly reporting such ACP-KS interactions based on the incorporation of an amino acid with photocrosslinking functionality. Crucially, this photocrosslinking strategy can be applied to any polyketide or fatty acid synthase regardless of substrate specificity, and can be adapted to a high-throughput format for directed evolution studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号