首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   18篇
  100篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   10篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1988年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1977年   3篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
91.
The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.  相似文献   
92.
How 6R-tetrahydrobiopterin (H(4)B) participates in Arg hydroxylation as catalyzed by the nitric oxide synthases (NOSs) is a topic of current interest. Previous work with the oxygenase domain of inducible NOS (iNOSoxy) demonstrated that H(4)B radical formation is kinetically coupled to disappearance of an initial heme-dioxy intermediate and to Arg hydroxylation in a single turnover reaction run at 10 degrees C [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. Here we used 5-methyl-H(4)B to investigate how pterin structure influences radical formation and associated catalytic steps. In the presence of Arg, the heme-dioxy intermediate in 5-methyl-H(4)B-bound iNOSoxy reacted at a rate of 35 s(-)(1), which is 3-fold faster than with H(4)B. This was coupled to a faster rate of 5-methyl-H(4)B radical formation (40 vs 12.5 s(-)(1)) and to a faster and more productive Arg hydroxylation. The EPR spectrum of the enzyme-bound 5-methyl-H(4)B radical had different hyperfine structure than the bound H(4)B radical and exhibited a 3-fold longer half-life after its formation. A crystal structure of 5-methyl-H(4)B-bound iNOSoxy revealed that there are minimal changes in conformation of the bound pterin or in its interactions with the protein as compared to H(4)B. Together, we conclude the following: (1) The rate of heme-dioxy reduction is linked to pterin radical formation and is sensitive to pterin structure. (2) Faster heme-dioxy reduction increases the efficiency of Arg hydroxylation but still remains rate limiting for the reaction. (3) The 5-methyl group influences heme-dioxy reduction by altering the electronic properties of the pterin rather than changing protein structure or interactions. (4) Faster electron transfer from 5-methyl-H(4)B may be due to increased radical stability afforded by the N-5 methyl group.  相似文献   
93.
Hemann MT  Strong MA  Hao LY  Greider CW 《Cell》2001,107(1):67-77
Loss of telomere function can induce cell cycle arrest and apoptosis. To investigate the processes that trigger cellular responses to telomere dysfunction, we crossed mTR-/- G6 mice that have short telomeres with mice heterozygous for telomerase (mTR+/-) that have long telomeres. The phenotype of the telomerase null offspring was similar to that of the late generation parent, although only half of the chromosomes were short. Strikingly, spectral karyotyping (SKY) analysis revealed that loss of telomere function occurred preferentially on chromosomes with critically short telomeres. Our data indicate that, while average telomere length is measured in most studies, it is not the average but rather the shortest telomeres that constitute telomere dysfunction and limit cellular survival in the absence of telomerase.  相似文献   
94.

Background

Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure.

Methods

Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation.

Results

Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice.

Conclusion

Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure.  相似文献   
95.
We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case–control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0503-2) contains supplementary material, which is available to authorized users.  相似文献   
96.
97.
Clinical studies demonstrate a positive correlation between the extent of matrix metalloproteinase (MMP) activation and malignant progression of precancerous lesions. Therefore, identification of effective, well-tolerated MMP inhibitors represents a rational chemopreventive strategy. A variety of agents, including proteinases and thiol-oxidizing compounds, activate MMPs by initiating release of the propeptide's cysteine sulfur "blockage" of the MMP active site. Despite the importance of the propeptide's cysteine thiol in preserving MMP latency, limited studies have evaluated the effects of reduced thiols on MMP function. This study investigated the effects of two naturally occurring nonprotein thiols, i.e., glutathione (GSH) and N-acetylcysteine (NAC), on activation, function, and cellular-extracellular matrix interactions of the basement-membrane-degrading gelatinase, MMP-9. Our results reveal that NAC and GSH employ protein S-thiolation to inhibit organomercurial activation of pro-MMP-9. Gelatinase activity assays showed that GSH and NAC significantly inhibited MMP-9 but not MMP-2 function, implying isoform structural specificity. Immunoblot analyses, which suggested GSH interacts with MMP-9's active-site Zn, were corroborated by computational molecular modeling. Cell invasion assays revealed that NAC enhanced endostatin's ability to inhibit human cancer cell invasion. Collectively, these data demonstrate that nonprotein thiols suppress MMP-9 activation and function and introduce the prospect for their use in chemopreventive applications.  相似文献   
98.

Background

Several founder mutations leading to increased risk of cancer among Ashkenazi Jewish individuals have been identified, and some estimates of the age of the mutations have been published. A variety of different methods have been used previously to estimate the age of the mutations. Here three datasets containing genotype information near known founder mutations are reanalyzed in order to compare three approaches for estimating the age of a mutation. The methods are: (a) the single marker method used by Risch et al., (1995); (b) the intra-allelic coalescent model known as DMLE, and (c) the Goldgar method proposed in Neuhausen et al. (1996), and modified slightly by our group. The three mutations analyzed were MSH2*1906 G->C, APC*I1307K, and BRCA2*6174delT.

Results

All methods depend on accurate estimates of inter-marker recombination rates. The modified Goldgar method allows for marker mutation as well as recombination, but requires prior estimates of the possible haplotypes carrying the mutation for each individual. It does not incorporate population growth rates. The DMLE method simultaneously estimates the haplotypes with the mutation age, and builds in the population growth rate. The single marker estimates, however, are more sensitive to the recombination rates and are unstable. Mutation age estimates based on DMLE are 16.8 generations for MSH2 (95% credible interval (13, 23)), 106 generations for I1037K (86-129), and 90 generations for 6174delT (71-114).

Conclusions

For recent founder mutations where marker mutations are unlikely to have occurred, both DMLE and the Goldgar method can give good results. Caution is necessary for older mutations, especially if the effective population size may have remained small for a long period of time.
  相似文献   
99.
DNA damage-mediated induction of a chemoresistant niche   总被引:1,自引:0,他引:1  
Gilbert LA  Hemann MT 《Cell》2010,143(3):355-366
While numerous cell-intrinsic processes are known to play decisive roles in chemotherapeutic response, relatively little is known about the impact of the tumor microenvironment on therapeutic outcome. Here, we use a well-established mouse model of Burkitt's lymphoma to show that paracrine factors in the tumor microenvironment modulate lymphoma cell survival following the administration of genotoxic chemotherapy. Specifically, IL-6 and Timp-1 are released in the thymus in response to DNA damage, creating a "chemo-resistant niche" that promotes the survival of a minimal residual tumor burden and serves as a reservoir for eventual tumor relapse. Notably, IL-6 is released acutely from thymic endothelial cells in a p38-dependent manner following genotoxic stress, and this acute secretory response precedes the gradual induction of senescence in tumor-associated stromal cells. Thus, conventional chemotherapies can induce tumor regression while simultaneously eliciting stress responses that protect subsets of tumor cells in select anatomical locations from drug action.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号