首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   7篇
  98篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  1999年   2篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有98条查询结果,搜索用时 0 毫秒
31.
Eleven biosurfactant producing bacteria were isolated from different petroleum‐contaminated soil and sludge samples. Among these 11 isolates, two were identified as promising, as they reduced the surface tension of culture medium to values below 27 mN m?1. Besides biosurfactant production property, they exhibited good flocculating activity. Microbacterium sp. was identified as a new addition to the list of biosurfactant and bioflocculant‐producers. Optimization of various conditions for rhamnolipid production was carried out for one of the promising isolate, Pseudomonas aeruginosa BS‐161R. Bioglycerol (2.5%), as a cheap renewable carbon source, attained better rhamnolipid yield, while sodium nitrate appeared to be the preferable nitrogen source. The optimum carbon to nitrogen (C/N) and carbon to iron (C/Fe) ratios achieved were 15 and 28,350, respectively, which favored rhamnolipid production. Physical parameters like pH, temperature, and agitation speed also affected the production of rhamnolipids. Results from shake flask optimization indicated that the concentration of bioglycerol, sodium nitrate, and iron were the most significant factors affecting rhamnolipid production, which was supported by the results of central composite rotatable design. After optimization of the culture conditions, the production of rhamnolipids increased by ninefold from 0.369 to 3.312 g L?1. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
32.
33.
Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world’s potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review.  相似文献   
34.
Plasmodium falciparum, the causative agent of the fatal form of malaria, synthesizes GMP primarily from IMP and, hence, needs active GMPS (GMP synthetase) for its survival. GMPS, a G-type amidotransferase, catalyses the amination of XMP to GMP with the reaction occurring in two domains, the GAT (glutamine amidotransferase) and ATPPase (ATP pyrophosphatase). The GAT domain hydrolyses glutamine to glutamate and ammonia, while the ATPPase domain catalyses the formation of the intermediate AMP-XMP from ATP and XMP. Co-ordination of activity across the two domains, achieved through channelling of ammonia from GAT to the effector domain, is the hallmark of amidotransferases. Our studies aimed at understanding the kinetic mechanism of PfGMPS (Plasmodium falciparum GMPS) indicated steady-state ordered binding of ATP followed by XMP to the ATPPase domain with glutamine binding in a random manner to the GAT domain. We attribute the irreversible, Ping Pong step seen in initial velocity kinetics to the release of glutamate before the attack of the adenyl-XMP intermediate by ammonia. Specific aspects of the overall kinetic mechanism of PfGMPS are different from that reported for the human and Escherichia coli enzymes. Unlike human GMPS, absence of tight co-ordination of activity across the two domains was evident in the parasite enzyme. Variations seen in the inhibition by nucleosides and nucleotide analogues between human GMPS and PfGMPS highlighted differences in ligand specificity that could serve as a basis for the design of specific inhibitors. The present study represents the first report on recombinant His-tagged GMPS from parasitic protozoa.  相似文献   
35.
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coli AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in Km values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the kcat value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the biochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coli AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis.  相似文献   
36.
37.
cN-II class of 5' purine nucleotidases exhibit specificity for IMP/GMP and belong to the HAD (haloacid dehalogenase) superfamily of hydrolases. The recently identified ISNI class of IMP specific 5'-nucleotidases occurring in yeast, fungi and certain Plasmodia lack sequence homology with the cN-II class of enzymes. We show from analysis of motif and fold conservation that ISN1s also belong to the HAD superfamily. This identification adds a new novel member to this superfamily.  相似文献   
38.
The present investigation was carried out to evaluate the effect of stress hormone cortisol on the myogenic markers in the C2C12 cells co-cultured with 3T3-L1 preadipocytes. Co-culturing was achieved by transwell inserts with a 0.4 μm porous membrane. C2C12 and 3T3-L1 cells were grown independently on the transwell plates. After differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates for co-culturing. 10 μg/μl of cortisol was added to the medium. After 72 h of treatment, C2C12 cells which were in the lower well were harvested for analysis. RT-PCR analysis of myogenic markers such as of myogenin, MyoD, Myf5, PAX3 and PAX7 showed a significant reduction in the mRNA expression of these myogenic markers. In addition, cortisol increased calpain activity, which led to accelerated protein degradation, which in turn reduced the myogenic rate. In conclusion, cortisol treatment reduced mRNA expression of myogenic markers in the co-cultured C2C12 cells, which is quite distinct from one dimensional mono-cultured C2C12 cells.  相似文献   
39.
In aerobic respiration, the tricarboxylic acid cycle is pivotal to the complete oxidation of carbohydrates, proteins, and lipids to carbon dioxide and water. Plasmodium falciparum, the causative agent of human malaria, lacks a conventional tricarboxylic acid cycle and depends exclusively on glycolysis for ATP production. However, all of the constituent enzymes of the tricarboxylic acid cycle are annotated in the genome of P. falciparum, which implies that the pathway might have important, yet unidentified biosynthetic functions. Here we show that fumarate, a side product of the purine salvage pathway and a metabolic intermediate of the tricarboxylic acid cycle, is not a metabolic waste but is converted to aspartate through malate and oxaloacetate. P. falciparum-infected erythrocytes and free parasites incorporated [2,3-(14)C]fumarate into the nucleic acid and protein fractions. (13)C NMR of parasites incubated with [2,3-(13)C]fumarate showed the formation of malate, pyruvate, lactate, and aspartate but not citrate or succinate. Further, treatment of free parasites with atovaquone inhibited the conversion of fumarate to aspartate, thereby indicating this pathway as an electron transport chain-dependent process. This study, therefore, provides a biosynthetic function for fumarate hydratase, malate quinone oxidoreductase, and aspartate aminotransferase of P. falciparum.  相似文献   
40.
A calmodulin-like protein (CAMLP) from Mycobacterium smegmatis was purified to homogeneity and partially sequenced; these data were used to produce a full-length clone, whose DNA sequence contained a 55-amino-acid open reading frame. M. smegmatis CAMLP, expressed in Escherichia coli, exhibited properties characteristic of eukaryotic calmodulin: calcium-dependent stimulation of eukaryotic phosphodiesterase, which was inhibited by the calmodulin antagonist trifluoperazine, and reaction with anti-bovine brain calmodulin antibodies. Consistent with the presence of nine acidic amino acids (16%) in M. smegmatis CAMLP, there is one putative calcium-binding domain in this CAMLP, compared to four such domains for eukaryotic calmodulin, reflecting the smaller molecular size (approximately 6 kDa) of M. smegmatis CAMLP. Ultracentrifugation and mass spectral studies excluded the possibility that calcium promotes oligomerization of purified M. smegmatis CAMLP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号