首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   4篇
  2015年   6篇
  2014年   4篇
  2013年   1篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1961年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
21.
The identification of sites resulting in cross-contamination of poultry flocks in the abattoir and determination of the survival and persistence of campylobacters at these sites are essential for the development of intervention strategies aimed at reducing the microbial burden on poultry at retail. A novel molecule-based method, using strain- and genus-specific oligonucleotide probes, was developed to detect and enumerate specific campylobacter strains in mixed populations. Strain-specific oligonucleotide probes were designed for the short variable regions (SVR) of the flaA gene in individual Campylobacter jejuni strains. A 16S rRNA Campylobacter genus-specific probe was also used. Both types of probes were used to investigate populations of campylobacters by colony lift hybridization. The specificity and proof of principle of the method were tested using strains with closely related SVR sequences and mixtures of these strains. Colony lifts of campylobacters were hybridized sequentially with up to two labeled strain-specific probes, followed by the generic 16S rRNA probe. SVR probes were highly specific, differentiating down to 1 nucleotide in the target sequence, and were sufficiently sensitive to detect colonies of a single strain in a mixed population. The 16S rRNA probe detected all Campylobacter spp. tested but not closely related species, such as Arcobacter skirrowi and Helicobacter pullorum. Preliminary field studies demonstrated the application of this technique to target strains isolated from poultry transport crate wash tank water. This method is quantitative, sensitive, and highly specific and allows the identification and enumeration of selected strains among all of the campylobacters in environmental samples.  相似文献   
22.
23.
Protein phosphatase 2C (PP2C) is a Mn2+- or Mg2+-dependent protein Ser/Thr phosphatase that is essential for regulating cellular stress responses in eukaryotes. The crystal structure of human PP2C reveals a novel protein fold with a catalytic domain composed of a central beta-sandwich that binds two manganese ions, which is surrounded by alpha-helices. Mn2+-bound water molecules at the binuclear metal centre coordinate the phosphate group of the substrate and provide a nucleophile and general acid in the dephosphorylation reaction. Our model presents a framework for understanding not only the classical Mn2+/Mg2+-dependent protein phosphatases but also the sequence-related domains of mitochondrial pyruvate dehydrogenase phosphatase, the Bacillus subtilus phosphatase SpoIIE and a 300-residue domain within yeast adenyl cyclase. The protein architecture and deduced catalytic mechanism are strikingly similar to the PP1, PP2A, PP2B family of protein Ser/Thr phosphatases, with which PP2C shares no sequence similarity, suggestive of convergent evolution of protein Ser/Thr phosphatases.  相似文献   
24.

Background  

In order to identify new virulence determinants in Y. pseudotuberculosis a comparison between its genome and that of Yersinia pestis was undertaken. This reveals dozens of pseudogenes in Y. pestis, which are still putatively functional in Y. pseudotuberculosis and may be important in the enteric lifestyle. One such gene, YPTB1572 in the Y. pseudotuberculosis IP32953 genome sequence, encodes a protein with similarity to invasin, a classic adhesion/invasion protein, and to intimin, the attaching and effacing protein from enteropathogenic (EPEC) and enterohaemorraghic (EHEC) Escherichia coli.  相似文献   
25.

Background

Many fish species experience long periods of fasting in nature often associated with seasonal reductions in water temperature and prey availability or spawning migrations. During periods of nutrient restriction, changes in metabolism occur to provide cellular energy via catabolic processes. Muscle is particularly affected by prolonged fasting as myofibrillar proteins act as a major energy source. To investigate the mechanisms of metabolic reorganisation with fasting and refeeding in a saltwater stage of Atlantic salmon (Salmo salar L.) we analysed the expression of genes involved in myogenesis, growth signalling, lipid biosynthesis and myofibrillar protein degradation and synthesis pathways using qPCR.

Results

Hierarchical clustering of gene expression data revealed three clusters. The first cluster comprised genes involved in lipid metabolism and triacylglycerol synthesis (ALDOB, DGAT1 and LPL) which had peak expression 3-14d after refeeding. The second cluster comprised ADIPOQ, MLC2, IGF-I and TALDO1, with peak expression 14-32d after refeeding. Cluster III contained genes strongly down regulated as an initial response to feeding and included the ubiquitin ligases MuRF1 and MAFbx, myogenic regulatory factors and some metabolic genes.

Conclusion

Early responses to refeeding in fasted salmon included the synthesis of triacylglycerols and activation of the adipogenic differentiation program. Inhibition of MuRF1 and MAFbx respectively may result in decreased degradation and concomitant increased production of myofibrillar proteins. Both of these processes preceded any increase in expression of myogenic regulatory factors and IGF-I. These responses could be a necessary strategy for an animal adapted to long periods of food deprivation whereby energy reserves are replenished prior to the resumption of myogenesis.  相似文献   
26.
Inhibitor-1 (I-1) and inhibitor-2 (I-2) selectively inhibit type 1 protein serine/threonine phosphatases (PP1). To define the molecular basis for PP1 inhibition by I-1 and I-2 charged-to-alanine substitutions in the Saccharomyces cerevisiae, PP1 catalytic subunit (GLC7), were analyzed. Two PP1 mutants, E53A/E55A and K165A/E166A/K167A, showed reduced sensitivity to I-2 when compared with wild-type PP1. Both mutants were effectively inhibited by I-1. Two-hybrid analysis and coprecipitation or pull-down assays established that wild-type and mutant PP1 catalytic subunits bound I-2 in an identical manner and suggested a role for the mutated amino acids in enzyme inhibition. Inhibition of wild-type and mutant PP1 enzymes by full-length I-2(1-204), I-2(1-114), and I-2(36-204) indicated that the mutant enzymes were impaired in their interaction with the N-terminal 35 amino acids of I-2. Site-directed mutagenesis of amino acids near the N terminus of I-2 and competition for PP1 binding by a synthetic peptide encompassing an I-2 N-terminal sequence suggested that a PP1 domain composed of amino acids Glu-53, Glu-55, Asp-165, Glu-166, and Lys-167 interacts with the N terminus of I-2. This defined a novel regulatory interaction between I-2 and PP1 that determines I-2 potency and perhaps selectivity as a PP1 inhibitor.  相似文献   
27.
Burmese is an old and popular cat breed, however, several health concerns, such as hypokalemia and a craniofacial defect, are prevalent, endangering the general health of the breed. Hypokalemia, a subnormal serum potassium ion concentration ([K+]), most often occurs as a secondary problem but can occur as a primary problem, such as hypokalaemic periodic paralysis in humans, and as feline hypokalaemic periodic polymyopathy primarily in Burmese. The most characteristic clinical sign of hypokalemia in Burmese is a skeletal muscle weakness that is frequently episodic in nature, either generalized, or sometimes localized to the cervical and thoracic limb girdle muscles. Burmese hypokalemia is suspected to be a single locus autosomal recessive trait. A genome wide case-control study using the illumina Infinium Feline 63K iSelect DNA array was performed using 35 cases and 25 controls from the Burmese breed that identified a locus on chromosome E1 associated with hypokalemia. Within approximately 1.2 Mb of the highest associated SNP, two candidate genes were identified, KCNH4 and WNK4. Direct sequencing of the genes revealed a nonsense mutation, producing a premature stop codon within WNK4 (c.2899C>T), leading to a truncated protein that lacks the C-terminal coiled-coil domain and the highly conserved Akt1/SGK phosphorylation site. All cases were homozygous for the mutation. Although the exact mechanism causing hypokalemia has not been determined, extrapolation from the homologous human and mouse genes suggests the mechanism may involve a potassium-losing nephropathy. A genetic test to screen for the genetic defect within the active breeding population has been developed, which should lead to eradication of the mutation and improved general health within the breed. Moreover, the identified mutation may help clarify the role of the protein in K+ regulation and the cat represents the first animal model for WNK4-associated hypokalemia.  相似文献   
28.
29.

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号