首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3588篇
  免费   248篇
  2021年   24篇
  2020年   25篇
  2019年   26篇
  2018年   47篇
  2017年   38篇
  2016年   60篇
  2015年   103篇
  2014年   133篇
  2013年   180篇
  2012年   178篇
  2011年   181篇
  2010年   117篇
  2009年   88篇
  2008年   157篇
  2007年   210篇
  2006年   192篇
  2005年   172篇
  2004年   172篇
  2003年   156篇
  2002年   149篇
  2001年   48篇
  2000年   35篇
  1999年   57篇
  1998年   39篇
  1997年   43篇
  1996年   37篇
  1995年   41篇
  1994年   36篇
  1993年   45篇
  1992年   29篇
  1991年   29篇
  1990年   36篇
  1989年   39篇
  1988年   46篇
  1987年   46篇
  1986年   25篇
  1985年   42篇
  1984年   31篇
  1983年   45篇
  1982年   43篇
  1981年   38篇
  1980年   40篇
  1979年   32篇
  1978年   35篇
  1977年   33篇
  1976年   24篇
  1975年   29篇
  1974年   25篇
  1973年   28篇
  1970年   27篇
排序方式: 共有3836条查询结果,搜索用时 31 毫秒
81.
Publications on archaeological remains of cultivated plants have been collected, mainly from 1992 and 1993, with some earlier and later ones. A list is given of the finds according to taxon, country, site and age.  相似文献   
82.
A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.  相似文献   
83.
Elevated levels of salicylic acid (SA) are required for the induction of systemic acquired resistance (SAR) in plants. Recently, a salicylic acid-binding protein (SABP) isolated from tobacco was shown to have catalase activity. Based on this finding elevated levels of hydrogen peroxide (H2O2) were postulated to act as a second messenger of SA in the SAR signal transduction pathway. A series of experiments have been carried out to clarify the role of H2O2 in SAR-signaling. No increase of H2O2 was found during the onset of SAR. Induction of the SAR gene, PR-1, by H2O2 and H2O2-inducing chemicals is strongly suppressed in transgenic tobacco plants that express the bacterial salicylate hydroxylase gene, indicating that H2O2 induction of SAR genes is dependent on SA accumulation. Following treatment of plants with increasing concentrations of H2O2, a dose-dependent accumulation of total SA species was found, suggesting that H2O2 may induce PR-1 gene expression through SA accumulation. While the results do not support a role for H2O2 in SAR signaling, it is suggested that SA inhibition of catalase activity may be important in tissues undergoing a hypersensitive response.  相似文献   
84.
85.
Summary In the noctuid moth Spodoptera exempta, the distribution of visual pigments within the fused rhabdoms of the compound eyes was investigated by electron microscopy. Each ommatidium regularly contains eight receptor cells belonging to three morphological types: one distal, six medial, and one basal cell (Meinecke 1981); four different visual pigments — absorption maxima at approximately 355, 465, 515, and 560 nm — are known to occur within the eye (Langer et al. 1979). The compound eyes were illuminated in situ by use of monochromatic light of different wavelengths. This illumination produced a wide scale of structural changes in the microvilli of the rhabdomeres of individual cells. Preparation of eyes by freeze-substitution revealed the structural changes in the rhabdomeres to be effects of light occurring in vivo.The degree of structural changes may be considerably different in rhabdomeres within the same ommatidium; it was found to depend on the wavelength and the duration of illumination, the intensity received by the ommatidia as well as the spectral sensitivity of the receptor cells. Therefore, it was possible to estimate the spectral sensitivities of the morphological types of receptor cells. Generally, all medial cells are green receptors and all basal cells red receptors; distal cells are blue receptors in about two-thirds of the ommatidia, while in the remaining third of them distal cells are sensitive to ultraviolet light.Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach)  相似文献   
86.
Summary The UV photoproduct, thymine dimer ( ), is excorporated with a remarkably low rate from the DNA of human fibroblasts grown in cell culture. An UV dose of 18 J/m2 creates 0.045% (related to thymine). Within the first two days of repair logarithmically growing and quiescent fibroblasts exhibit the same repair rates; thereafter, the proportion of is lower in growing cells due to recovery of DNA replication. Only about 50% of the lesions are excised within 24 h. In quiescent cells, 13% of the thymine dimers originally present can be detected as late as a week after UV-irradiation. Two distinct first-order rate constants indicate that approximately half of the dimers are less accessible to repair. Repair measured by the nucleoid decondensation technique corresponds to the faster repair rate, whereas the slow repair rate cannot be detected by this method. Saturation of repair is found beyond 27 J/m2. The remarkably slow rate of excision indicates that thymine dimers are not lethal lesions in human fibroblasts.  相似文献   
87.
Summary Soluble cyclic nucleotide 3:5 monophosphate phosphodiesterase (PDE) (EC 3.1.4.17) obtained from beef adrenal cortex as the 100,000 g/1.5 h supernatant is usually regarded as a very hydrophilic protein. However, when subjected to hydrophobic chromatography on Octyl-Sepharose CL 413 it reveals strong hydrophobic interaction with the column matrix. The chromatographic procedure leads to multiple but distinct forms of PDE which degrade cAMP beyond 5AMP to inosine, via adenosine. The same metabolic pathway was previously observed with a membrane bound multienzyme sequence. Even the soluble PDE forms separated by gel chromatography (Sephadex G 200, Sepharose S 200 and Sepharose 6B) and soluble PDE of other tissue (heart) displayed the same metabolic pattern. These findings indicate a linkage between PDE, nucleotidase and deaminase activities. The intimate association of the enzyme is additionally supported by the phenomenon of kinetic advantage clearly observed with the most hydrophobic PDE form. Its end product, inosine, is formed more rapidly from CAMP than from the intermediate 5AMP. This paradoxical phenomenon is explained by close physical proximity between the enzymes involved in the metabolic pathway. Furthermore, when the most hydrophobic PDE form was immobilized on Octyl-Sepharose, rather than loss of catalytic activity even higher enzyme activities were measured. It is suggested that the so-called multiple forms of soluble PDE-at least in part-represent more or less preserved forms of a native, membrane bound, multienzyme sequence which degrades cyclic nucleotides.  相似文献   
88.
89.
Summary We have isolated twenty-six nuclear, singlegene cytochrome-deficient mutants of Neurospora crassa as an initial step toward the study of the structural components and regulatory mechanisms involved in the biogenesis of the mitochondrial cytochrome system. These mutants, together with two previously described mutants, cyt-1 and cyt-2, have been classified into six distinct groups on the basis of cytochrome phenotype: a) cytochrome aa 3 deficiency (due to mutations affecting loci designated cya); b) cytochrome b deficiency (cyb-1 locus); c) cytochrome b deficiency with a partial deficiency of cytochrome aa 3 (cyb-2 locus); d) deficiency of both cytochromes aa 3 and b (cyt loci); e) deficiency of both cytochromes aa 3 and c (cyt-2 locus); and f) partial deficiency of cytochromes aa 3 and c (cyt-12 locus).Four of seven mutations affecting cya loci have been mapped and are located on linkage groups I, II, V, and VI. It is not yet known whether these genes code for structural components of cytochrome oxidase or have a regulatory function that affects synthesis or assembly of the enzyme. The cyb-1 and cyb-2 genes are located on linkage groups V and VI, respectively, and appear to code for regulatory elements that control the biogenesis of cytochromes b and aa 3 . The positions of the cyt mutations that cause a simultaneous deficiency of cytochromes aa 3 and b are dispersed throughout the genome, except for two gene clusters on the left arm of linkage group I. Some of these mutants may be deficient in mitochondrial protein synthesis. Two mutations, cyt-2 and cyt-12, are located on linkage groups VI and II, respectively, and appear to affect genes that code for components of a regulatory system that controls the biogenesis of cytochromes aa 3 and c.  相似文献   
90.
The electron impact mass spectra of 19 trimethyl silylated flavonol mono-, di- and -triglycosides are reported for the first time. All spectra show wel  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号