首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   23篇
  123篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1976年   1篇
排序方式: 共有123条查询结果,搜索用时 11 毫秒
71.

Objective

Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified.

Methods and Results

1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect.

Conclusion

We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine.  相似文献   
72.
Various adhesion molecules play an important role in defining cell fate and maintaining tissue integrity. Therefore, cross-signaling between adhesion receptors should be a common phenomenon to support the orchestrated changes of cells' connections to the substrate and to the neighboring cells during tissue remodeling. Recently, we have demonstrated that the epithelial cell adhesion molecule Ep-CAM negatively modulates cadherin-mediated adhesions in direct relation to its expression levels. Here, we used E-cadherin/alpha-catenin chimera constructs to define the site of Ep-CAM's negative effect on cadherin-mediated adhesions. Murine L-cells transfected with either E-cadherin/alpha-catenin fusion protein, or E-cadherin fused to the carboxy-terminal half of alpha-catenin, were subsequently supertransfected with an inducible Ep-CAM construct. Introduction of Ep-CAM altered the cell's morphology, weakened the strength of cell-cell interactions, and decreased the cytoskeleton-bound fraction of the cadherin/catenin chimeras in both cell models. Furthermore, expression of Ep-CAM induced restructuring of F-actin, with changes in thickness and orientation of the actin filaments. The results showed that Ep-CAM affects E-cadherin-mediated adhesions without involvement of beta-catenin by disrupting the link between alpha-catenin and F-actin. The latter is likely achieved through remodeling of the actin cytoskeleton by Ep-CAM, possibly through pp120.  相似文献   
73.

Objectives

To investigate the impact of early combined antiretroviral therapy (cART) on inflammation biomarkers and immune activation during acute and early chronic HIV-1 infection.

Methods

We included 12 acute (AHI), 11 early chronic (EcHI), and 18 late chronic HIV-1-infected (LcHI) individuals who were treated with cART and 18 HIV-1-uninfected (HIV-neg) individuals. Plasmatic levels of inflammation biomarkers, CD8+CD38+HLA-DR+ T cell frequencies, CD4 T cell counts, CD4/CD8 ratio, total HIV-1 DNA and plasmatic viral load were evaluated. Mann–Whitney test, Pearson and Spearman correlation, and linear regression models were used for statistical analyses.

Results

IP-10, IL-18, and sCD163 were significantly elevated at pre-ART in the AHI and EcHI groups, showing a significant reduction after 6 months of cART in the AHI group, achieving similar levels to the HIV-neg group. For the EcHI group, the IP-10 and sCD163 levels were also significantly reduced on M6-ART; however, IP-10 levels remained higher than in the HIV-neg group, and no significant reduction of IL-18 levels was observed. The CD8+ T cell activation levels were elevated in the AHI and EcHI groups at pre-ART and showed a significant reduction on M6-ART, but they were similar to levels seen for HIV-neg only after 12 months of cART. At pre-ART, IP-10 levels but not IL-18 levels were positively correlated with HIV-1 viral load in the AHI group.

Conclusions

Early initiation of cART in HIV infection can reduce systemic inflammation, but the earlier normalization of the inflammation markers was only observed when cART was initiated in the acute phase of infection. A slower dynamic of reduction was observed for CD8+ T cell activation.
  相似文献   
74.
The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation.  相似文献   
75.
Eukaryotic translation is initiated following binding of ribosomes either to the capped 5' end of an mRNA or to an internal ribosomal entry site (IRES) within its 5' nontranslated region. These processes are both mediated by eukaryotic initiation factor 4F (eIF4F), which consists of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G subunits. Here we present a functional analysis of eIF4F which defines the subunits and subunit domains necessary for its function in initiation mediated by the prototypical IRES element of encephalomyocarditis virus. In an initiation reaction reconstituted in vitro from purified translation components and lacking eIF4A and -4F, IRES-mediated initiation did not require the cap-binding protein eIF4E but was absolutely dependent on eIF4A and the central third of eIF4G. This central domain of eIF4G bound strongly and specifically to a structural element within the encephalomyocarditis virus IRES upstream of the initiation codon in an ATP-independent manner and with the same specificity as eIF4F. The carboxy-terminal third of eIF4G did not bind to the IRES. The central domain of eIF4G was itself UV cross-linked to the IRES and strongly stimulated UV cross-linking of eIF4A to the IRES in conjunction with either eIF4B or with the carboxy-terminal third of eIF4G.  相似文献   
76.
T V Pestova  C U Hellen    E Wimmer 《Journal of virology》1991,65(11):6194-6204
Translation of poliovirus RNA is initiated by cap-independent internal entry of ribosomes into the 5' nontranslated region. This process is dependent on elements within the 5' nontranslated region (the internal ribosomal entry site) and may involve novel translation factors. Systematic mutation of a conserved oligopyrimidine tract has revealed a cis-acting element that is essential for translation in vitro. The function of this element is related to its position relative to other cis-acting domains. This element is part of a more complex structure that interacts with several cellular factors, but changes in protein binding after mutation of this element were not detected in a UV cross-linking assay. A 57-kDa protein from the ribosomal salt wash fraction of HeLa cells was identified that binds upstream of the oligopyrimidine tract. Translation of poliovirus mRNA in vitro was strongly and specifically inhibited by competition with the p57-binding domain (nucleotides 260 to 488) of the 5' nontranslated region of encephalomyocarditis virus, indicating a probable role for p57 in poliovirus translation. p57 is likely to be identical to the ribosome-associated factor that binds to and is necessary for the function of the internal ribosomal entry site of encephalomyocarditis virus RNA.  相似文献   
77.
Picornaviruses are mammalian plus-strand RNA viruses whose genomes serve as mRNA. A study of the structure and function of these viral mRNAs has revealed differences among them in events leading to the initiation of protein synthesis. A large segment of the 5' nontranslated region, approximately 400 nucleotides in length, promotes 'internal' entry of ribosomes independent of the non-capped 5' end of the mRNA. This segment, which we have called the internal ribosome entry site (IRES), maps approximately 200 nt down-stream from the 5' end and is highly structured. IRES elements of different picornaviruses, although functionally similar in vitro and in vivo, are not identical in sequence or structure. However, IRES elements of the genera entero- and rhinoviruses, on the one hand, and cardio- and aphthoviruses, on the other hand, reveal similarities corresponding to phylogenetic kinship. All IRES elements contain a conserved Yn-Xm-AUG unit (Y, pyrimidine; X, nucleotide) which appears essential for IRES function. The IRES elements of cardio-, entero- and aphthoviruses bind a cellular protein, p57. In the case of cardioviruses, the interaction between a specific stem-loop of the IREs is essential for translation in vitro. The IRES elements of entero- and cardioviruses also bind the cellular protein, p52, but the significance of this interaction remains to be shown. The function of p57 or p52 in cellular metabolism is unknown. Since picornaviral IRES elements function in vivo in the absence of any viral gene products, we speculate that IRES-like elements may also occur in specific cellular mRNAs releasing them from cap-dependent translation. IRES elements are useful tools in the construction of high yield expression vectors, or for tagging cellular genetic elements.  相似文献   
78.
The reproductive biology and feeding habits of the hypopomid Brachyhypopomus bombilla were studied. The species has seasonal behavior, with breeding and feeding activity occurring mostly during the Southern Hemisphere spring and summer. We defined fractional spawning for the species and a relative fecundity similar to those previously reported for other gymnotiform species. According to the analysis of the food items, B. bombilla was included in the trophic category invertivorous, feeding mainly on autochthonous insects. The reproductive periods of males and females as well as female feeding activity were significantly related to the photoperiod. During a period of 5?months, when the lowest water temperatures and shortest photoperiod were recorded, all the specimens of B. bombilla were found buried in the muddy bottom of the creek, with lower electric organ discharge activity, empty stomachs, and gonads in early stages of the maturation process. This period, herein defined as a dormancy period, is reported here for the first time for a species of the Gymnotiformes order.  相似文献   
79.
The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary–EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV–cargo association and function.  相似文献   
80.
Cross-linking of CD44 in vitro promotes chemokinesis and actin-based dendrite formation in T and B cells. However, the mechanisms by which the adhesion molecule CD44 induces cytoskeleton activation in lymphocytes are still poorly understood. In this study, we have investigated whether myosin isoforms are involved in CD44-dependent dendrite formation in activated B cells. Pharmacological inhibition of myosin with 2,3-butanedione monoxime strongly affected spreading and dendrite formation, suggesting that these cellular motors may participate in these phenomena. Furthermore, immunofluorescence analysis showed differences in subcellular localization of class I and class II myosin during B cell spreading. In response to CD44 cross-linking, myosin-1c was polarized to lamellipodia, where F-actin was high. In contrast, the distribution of cytosplasmic nonmuscle class II myosin was not altered. Expressions of myosin-1c and II were also demonstrated in B cells by Western blot. Although the inhibition of PLCgamma, PI3K and MEK-1 activation affected the spreading and dendrite formation in activated B cells, only PLCgamma and MEK-1 inhibition correlated with absence of myosin-1c polarization. Additionally, myosin-1c polarization was observed upon cross-linking of other surface molecules, suggesting a common mechanism for B cell spreading. This work shows that class I and class II myosin are expressed in B cells, are differentially distributed, and may participate in the morphological changes of these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号