首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   47篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   12篇
  2015年   35篇
  2014年   31篇
  2013年   33篇
  2012年   46篇
  2011年   41篇
  2010年   33篇
  2009年   35篇
  2008年   41篇
  2007年   31篇
  2006年   32篇
  2005年   25篇
  2004年   28篇
  2003年   25篇
  2002年   27篇
  2001年   7篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   9篇
  1988年   9篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1975年   5篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1970年   4篇
  1968年   4篇
  1967年   5篇
  1966年   5篇
  1965年   3篇
排序方式: 共有700条查询结果,搜索用时 140 毫秒
81.
Current evidence indicates that the chronic inflammation observed in the intestines of patients with inflammatory bowel disease is due to an aberrant immune response to enteric flora. We have developed a lipid A-mimetic, CRX-526, which has antagonistic activity for TLR4 and can block the interaction of LPS with the immune system. CRX-526 can prevent the expression of proinflammatory genes stimulated by LPS in vitro. This antagonist activity of CRX-526 is directly related to its structure, particularly secondary fatty acyl chain length. In vivo, CRX-526 treatment blocks the ability of LPS to induce TNF-alpha release. Importantly, treatment with CRX-526 inhibits the development of moderate-to-severe disease in two mouse models of colonic inflammation: the dextran sodium sulfate model and multidrug resistance gene 1a-deficient mice. By blocking the interaction between enteric bacteria and the innate immune system, CRX-526 may be an effective therapeutic molecule for inflammatory bowel disease.  相似文献   
82.
83.
The proinflammatory agent tumour necrosis factor alpha (TNFalpha) is one of several agents causing vascular leakage. The N-terminal domain of CgA, vasostatin-I (CgA1-76), has recently been reported to inhibit TNFalpha induced gap formation in human umbilical venous endothelial cells. Here we report on the effect of recombinant human CgA1-78, vasostatin-I, on TNFalpha induced gap formation in two model systems of vascular leakage in arterial endothelial cells of bovine pulmonary (BPAEC) and coronary (BCAEC) origin. Vasostatin-I inhibited the TNFalpha induced gap formation in both models, being inactive in the unstimulated cells. The phosphorylation of p38MAP kinase in TNFalpha activated BPAEC was markedly attenuated in the presence of vasostatin-I and the inhibitory effect corresponded to that of the specific p38MAPK inhibitor SB203580. Vasostatin-I also inhibited the phosphorylation of p38MAPK induced by both thrombin and pertussis toxin in these cells. The results demonstrate that vasostatin-I has inhibitory effects on TNFalpha-induced disruption of confluent layers of cultured pulmonary and coronary arterial endothelial cells. This suggests that vasostatin-I may affect endothelial barrier dysfunction also in arterial vascular beds. Furthermore, the inhibitory activity of vasostatin-I may be associated with the p38MAPK signalling cascade via a pertussis toxin sensitive, presumably Galphai coupled mechanism.  相似文献   
84.
The chicken major histocompatibility complex (MHC) is commonly defined by serologic reactions of erythrocytes with antibodies specific to the highly polymorphic MHC class I (BF) and MHC class IV (BG) antigens. The microsatellite marker LEI0258 is known to be physically located within the MHC, between the BG and BF regions. DNA from various serologically defined MHC haplotypes was amplified by polymerase chain reaction with primers surrounding this marker. Twenty-six distinctive allele sizes were identified. Some serologically well-defined MHC haplotypes shared a common LEI0258 allele size but could be distinguished either by the addition of information from another nearby marker (MCW0371) or by small indels or single nucleotide polymorphism (SNP) differences between the alleles. The association between LEI0258 allele and serologically defined MHC haplotype was very consistent for the same haplotype from multiple sources. Sequence information for the region defined by LEI0258 was obtained for 51 different haplotypes. Two internal repeats whose lengths were 13 and 12 bp, respectively, are the primary basis for allelic variability. Allele size variation ranges from 182 to 552 bp. Four indels and five SNPs in the surrounding sequence provide additional means for distinguishing alleles. Typing with LEI0258 and MCW0371 will be useful in identifying MHC haplotypes in outbred populations of chickens particularly for the initial development of serological reagents.  相似文献   
85.
REV1 protein, a eukaryotic member of the Y family of DNA polymerases, is involved in the tolerance of DNA damage by translesion DNA synthesis. It is unclear how REV1 is recruited to replication foci in cells. Here, we report that mouse REV1 can bind directly to PCNA and that monoubiquitylation of PCNA enhances this interaction. The interaction between REV1 protein and PCNA requires a functional BRCT domain located near the N terminus of the former protein. Deletion or mutational inactivation of the BRCT domain abolishes the targeting of REV1 to replication foci in unirradiated cells, but not in UV-irradiated cells. In vivo studies in both chicken DT40 cells and yeast directly support the requirement of the BRCT domain of REV1 for cell survival and DNA damage-induced mutagenesis.  相似文献   
86.
Chromatin signatures of pluripotent cell lines   总被引:4,自引:0,他引:4  
Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.  相似文献   
87.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   
88.
Proton-coupled oligopeptide transporters (POTs) utilize the electrochemical proton gradient to facilitate uptake of di- or tripeptide molecules. YjdL is one of four POTs found in Escherichia coli. It has shown an extraordinary preference for di- rather than tripeptides, and is therefore significantly different from prototypical POTs such as the human hPepT1. Nonetheless YjdL contains several highly conserved POT residues, which include Glu388 that is located in the putative substrate binding cavity. Here we present biophysical characterization of WT-YjdL and Glu388Gln. Isothermal titration calorimetrical studies exhibit a Kd of 14 μM for binding of Ala-Lys to WT-YjdL. Expectedly, no binding could be detected for the tripeptide Ala-Ala-Lys. Surprisingly however, binding could not be detected for Ala-Gln, although earlier studies indicated inhibitory potencies of Ala-Gln to be comparable to Ala-Lys (IC50 values of 0.6 compared to 0.3 mM). Finally, Ala-Lys binding to Glu388Gln was also undetectable which may support a previously suggested role in interaction with the ligand peptide N-terminus.  相似文献   
89.
The number of people suffering from diabetes is hastily increasing and the condition is associated with altered brain glucose homeostasis. Brain glycogen is located in astrocytes and being a carbohydrate reservoir it contributes to glucose homeostasis. Furthermore, glycogen has been indicated to be important for proper neurotransmission under normal conditions. Previous findings from our laboratory suggested that glucose metabolism was reduced in type 2 diabetes, and thus we wanted to investigate more specifically how brain glycogen metabolism contributes to maintain energy status in the type 2 diabetic state. Also, our objective was to elucidate the contribution of glycogen to support neurotransmitter glutamate and GABA homeostasis. A glycogen phosphorylase (GP) inhibitor was administered to Sprague-Dawley (SprD) and Zucker Diabetic Fatty (ZDF) rats in vivo and after one day of treatment [1-13C]glucose was used to monitor metabolism. Brain levels of 13C labeling in glucose, lactate, alanine, glutamate, GABA, glutamine and aspartate were determined. Our results show that inhibition of brain glycogen metabolism reduced the amounts of glutamate in both the control and type 2 diabetes models. The reduction in glutamate was associated with a decrease in the pyruvate carboxylase/pyruvate dehydrogenase ratio in the control but not the type 2 diabetes model. In the type 2 diabetes model GABA levels were increased suggesting that brain glycogen serves a role in maintaining a proper ratio between excitatory and inhibitory neurotransmitters in type 2 diabetes. Both the control and the type 2 diabetic states had a compensatory increase in glucose-derived 13C processed through the TCA cycle following inhibition of glycogen degradation. Finally, it was indicated that the type 2 diabetes model might have an augmented necessity for compensatory upregulation at the glycolytic level.  相似文献   
90.
The reactive stromal phenotype is an important factor for prostate cancer progression and may be a new target for treatment and prevention. A new high efficiency preclinical protocol, the EPI bioassay, reflects the interaction of endocrine, paracrine and immune, (EPI) factors on induced androgen metabolism in human prostate reactive stroma. The bioassay is based on co-culturing human primary prostate stromal cells and LAPC-4 prostatic adenocarcinoma cells in a downscaled format of 96-well-plates for testing multiple doses of multiple target compounds. Metabolism of dehydroepiandrosterone (DHEA) with or without TGFβ1-induced stimulation (D+T) of the reactive stroma phenotype was assessed by increased testosterone in the media and PSA production of the epithelial prostate cancer cells. Using the non-metabolizable androgen R1881, effects from direct androgen action were distinguished from stromal androgen production from DHEA. Stromal cell androgenic bioactivity was confirmed using conditioned media from D+T-treated stromal cell monocultures in an androgen-inducible AR screening assay. We further showed that both agonists to estrogen receptor (ER), DPN (ERβ) and PPT (ERα), as well as estrogenic natural compounds including soy isoflavones attenuated D+T-induced PSA production. Studies with the pure ER agonists showed that activating either ERα or ERβ could inhibit both D+T-mediated and R1881-mediated PSA production with the D+T effect being more pronounced. In conclusion, natural compounds with estrogenic activity and pure ER agonists are very potent inhibitors of stromal conversion of DHEA to androgenic metabolites. More studies are needed to characterize the mechanisms involved in estrogenic modulation of the endocrine-immune-paracrine balance of the prostate microenvironment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号