首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   5篇
  142篇
  2018年   1篇
  2017年   1篇
  2015年   8篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   19篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   10篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   15篇
  2002年   7篇
  1998年   2篇
  1997年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
81.
Green tea's health benefits have been attributed to its major polyphenols, the catechins: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), and epicatechin (EC). Catechins (especially EGCG) modulate a wide range of biologically important molecules, including many membrane proteins. Yet, little is known about their mechanism(s) of action. We tested the catechins' bilayer-modifying potency using gramicidin A (gA) channels as molecular force probes. All the catechins alter gA channel function and modify bilayer properties, with a 500-fold range in potency (EGCG>ECG?EGC>EC). Additionally, the gallate group causes current block, as evident by brief downward current transitions (flickers).  相似文献   
82.
83.
Ingolfsson HI  Koeppe RE  Andersen OS 《Biochemistry》2007,46(36):10384-10391
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.  相似文献   
84.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds. Open in a separate windowClick here to view.(63M, flv)  相似文献   
85.
The adhesion G-protein-coupled receptors (GPCRs) (also termed LN-7TM or EGF-7TM receptors) are membrane-bound proteins with long N-termini containing multiple domains. Here, 2 new human adhesion-GPCRs, termed GPR133 and GPR144, have been found by searches done in the human genome databases. Both GPR133 and GPR144 have a GPS domain in their N-termini, while GPR144 also has a pentraxin domain. The phylogenetic analyses of the 2 new human receptors show that they group together without close relationship to the other adhesion-GPCRs. In addition to the human genes, mouse orthologues to those 2 and 15 other mouse orthologues to human were identified (GPR110, GPR111, GPR112, GPR113, GPR114, GPR115, GPR116, GPR123, GPR124, GPR125, GPR126, GPR128, LEC1, LEC2, and LEC3). Currently the total number of human adhesion-GPCRs is 33. The mouse and human sequences show a clear one-to-one relationship, with the exception of EMR2 and EMR3, which do not seem to have orthologues in mouse. EST expression charts for the entire repertoire of adhesion-GPCRs in human and mouse were established. Over 1600 ESTs were found for these receptors, showing widespread distribution in both central and peripheral tissues. The expression patterns are highly variable between different receptors, indicating that they participate in a number of physiological processes.  相似文献   
86.
We have characterized the biochemical function of the melanocortin 1 receptor (MC1R), a critical regulator of melanin synthesis, from 9 phylogenetically diverse primate species with varying coat colors. There is substantial diversity in melanocyte-stimulating hormone (MSH) binding affinity and basal levels of activity in the cloned MC1Rs. MSH binding was lost independently in lemur and New World monkey lineages, whereas high basal levels of MC1R activity occur in lemurs and some New World monkeys and Old World monkeys. Highest levels of basal activity were found in the MC1R of ruffed lemurs, which have the E94K mutation that leads to constitutive activation in other species. In 3 species (2 lemurs and the howler monkey), we report the novel finding that binding and inhibition of MC1R by agouti signaling protein (ASIP) can occur when MSH binding has been lost, thus enabling continuing regulation of the melanin type via ASIP expression. Together, these findings can explain the previous paradox of a predominantly pheomelanic coat in the red ruffed lemur (Varecia rubra). The presence of a functional, MSH-responsive MC1R in orangutan demonstrates that the mechanism of red hair generation in this ape is different from the prevalent mechanism in European human populations. Overall, we have found unexpected diversity in MC1R function among primates and show that the evolution of the regulatory control of MC1R activity occurs by independent variation of 3 distinct mechanisms: basal MC1R activity, MSH binding and activation, and ASIP binding and inhibition. This diversity of function is broadly associated with primate phylogeny and does not have a simple relation to coat color phenotype within primate clades.  相似文献   
87.
Spinal muscular atrophy (SMA) is a monogenic neurodegenerative disorder subdivided into four different types. Whole genome methylation analysis revealed 40 CpG sites associated with genes that are significantly differentially methylated between SMA patients and healthy individuals of the same age. To investigate the contribution of methylation changes to SMA severity, we compared the methylation level of found CpG sites, designed as “targets”, as well as the nearest CpG sites in regulatory regions of ARHGAP22, CDK2AP1, CHML, NCOR2, SLC23A2 and RPL9 in three groups of SMA patients. Of notable interest, compared to type I SMA male patients, the methylation level of a target CpG site and one nearby CpG site belonging to the 5’UTR of SLC23A2 were significantly hypomethylated 19–22% in type III-IV patients. In contrast to type I SMA male patients, type III-IV patients demonstrated a 16% decrease in the methylation levels of a target CpG site, belonging to the 5’UTR of NCOR2. To conclude, this study validates the data of our previous study and confirms significant methylation changes in the SLC23A2 and NCOR2 regulatory regions correlates with SMA severity.  相似文献   
88.
The Rhodopsin family of G protein coupled receptors (GPCRs) includes the phylogenetic α-group consisting of about 100 human members. The α-group is the only group of GPCRs that has many receptors for biogenic amines which are major drug targets. Several members of this group are orphan receptors and their functions are elusive. In this study we present a detailed phylogenetic and anatomical characterization of the Gpr153 receptor and also attempt to study its functional role. We identified the homologue of Gpr153 in the elephant shark genome and phylogenetic and synteny analyses revealed that Gpr162 and Gpr153 share a common ancestor that split most likely through a duplication event before the divergence of the tetrapods and the teleost lineage. A quantitative real-time PCR study reveals widespread expression of Gpr153 in the central nervous system and all the peripheral tissues investigated. Detailed in?situ hybridization on mouse brain showed specifically high expression in the thalamus, cerebellum and the arcuate nucleus. The antisense oligodeoxynucleotide knockdown of Gpr153 caused a slight reduction in food intake and the elevated plus maze test showed significant reduction in the percentage of time spent in the centre square, which points towards a probable role in decision making. This report provides the first detailed characterization of the evolution, expression and primary functional properties of the Gpr153 gene.  相似文献   
89.

Background  

Membrane proteins form key nodes in mediating the cell's interaction with the surroundings, which is one of the main reasons why the majority of drug targets are membrane proteins.  相似文献   
90.
Obestatin improves memory performance and causes anxiolytic effects in rats   总被引:10,自引:0,他引:10  
Obestatin is a peptide hormone that is derived from the same polypeptide precursor (preprogrelin) as ghrelin, but it acts in opposing way on ingestive behavior. Our previous studies showed that ghrelin affects memory and anxiety. Here, we studied the possible effects of icv obestatin injection in rats upon memory retention (using two different paradigms), anxiety like behavior (plus maze test), and food intake. Obestatin induces an increase in the percentage of open arms entries (Obestatin 3.0nmol/rat: 61.74+/-1.81), and percentage of time spent in open arms (Obestatin 3.0nmol/rat: 72.07+/-4.21) in relation to the control (33.31+/-1.54; 25.82+/-1.68), indicating an anxiolytic effect. The two doses of obestatin increased latency time in a step down test and the percentage time of novel object exploration, suggesting that the peptide influences learning and memory processes that involve the hippocampus and the amygdala. This report provides evidence indicating that obestatin effects are functionally opposite on anxiety and hunger to the ghrelin effects, while both these related peptides increase memory retention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号