全文获取类型
收费全文 | 854篇 |
免费 | 87篇 |
国内免费 | 2篇 |
专业分类
943篇 |
出版年
2023年 | 8篇 |
2022年 | 7篇 |
2021年 | 14篇 |
2020年 | 17篇 |
2019年 | 20篇 |
2018年 | 11篇 |
2017年 | 20篇 |
2016年 | 16篇 |
2015年 | 46篇 |
2014年 | 41篇 |
2013年 | 53篇 |
2012年 | 68篇 |
2011年 | 73篇 |
2010年 | 42篇 |
2009年 | 32篇 |
2008年 | 41篇 |
2007年 | 50篇 |
2006年 | 43篇 |
2005年 | 41篇 |
2004年 | 42篇 |
2003年 | 39篇 |
2002年 | 30篇 |
2001年 | 10篇 |
2000年 | 18篇 |
1999年 | 15篇 |
1998年 | 17篇 |
1997年 | 7篇 |
1996年 | 4篇 |
1995年 | 7篇 |
1994年 | 6篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1989年 | 8篇 |
1988年 | 4篇 |
1986年 | 4篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1982年 | 8篇 |
1981年 | 5篇 |
1979年 | 2篇 |
1978年 | 5篇 |
1977年 | 6篇 |
1976年 | 6篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 6篇 |
1972年 | 4篇 |
1969年 | 2篇 |
1967年 | 3篇 |
1966年 | 2篇 |
排序方式: 共有943条查询结果,搜索用时 15 毫秒
61.
62.
Correct timing and spatial location of growth factor expression is critical for undisturbed brain development and functioning. In terminally differentiated cells distinct biological responses to growth factors may depend on cell type specific activation of signalling cascades. We show that the hematopoietic growth factors thrombopoietin (TPO) and granulocyte colony-stimulating factor (GCSF) exert cell type specific effects on survival, proliferation and the degree of phosphorylation of Akt1, ERK1/2 and STAT3 in rat hippocampal neurons and cortical astrocytes. In neurons, TPO induced cell death and selectively activated ERK1/2. GCSF protected neurons from TPO- and hypoxia-induced cell death via selective activation of Akt1. In astrocytes, neither TPO nor GCSF had any effect on cell viability but inhibited proliferation. This effect was accompanied by activation of ERK1/2 and inhibition of STAT3 activity. A balance between growth factors, their receptors and signalling proteins may play an important role in regulation of neural cell survival. 相似文献
63.
Urheim S Rabben SI Skulstad H Lyseggen E Ihlen H Smiseth OA 《American journal of physiology. Heart and circulatory physiology》2005,288(5):H2375-H2380
There is a need for better methods to quantify regional myocardial function. In the present study, we investigated the feasibility of quantifying regional function in terms of a segmental myocardial work index as derived from strain Doppler echocardiography (SDE) and invasive pressure. In 10 anesthetized dogs, we measured left ventricular (LV) pressure by micromanometer and myocardial longitudinal strains by SDE and sonomicrometry. The regional myocardial work index (RMWI) was calculated as the area of the pressure-strain loop. As a reference method for strain, we used sonomicrometry. By convention, the loop area was assigned a positive sign when the pressure-strain coordinates rotated counterclockwise. Measurements were done at baseline and during volume loading and left anterior descending coronary artery (LAD) occlusion, respectively. There was a good correlation between RMWI calculated from strain by SDE and strain by sonomicrometry (y = 0.73x + 0.21, r = 0.82, P < 0.01). Volume loading caused an increase in RMWI from 1.3 +/- 0.2 to 2.2 +/- 0.1 kJ/m3 (P < 0.05) by SDE and from 1.5 +/- 0.3 to 2.7 +/- 0.3 kJ/m3 (P = 0.066) by sonomicrometry. Short-term ischemia (1 min) caused a decrease in RMWI from 1.3 +/- 0.2 to 0.3 +/- 0.04 kJ/m3 (P < 0.05) and from 1.3 +/- 0.3 to 0.5 +/- 0.2 kJ/m3 (P < 0.05) by SDE and sonomicrometry, respectively. In the nonischemic ventricle and during short-term ischemia, the pressure-strain loops rotated counterclockwise, consistent with actively contracting segments. Long-term ischemia (3 h), however, caused the pressure-strain loop to rotate clockwise, consistent with entirely passive segments, and the loop areas became negative, -0.2 +/- 0.1 and -0.1 +/- 0.03 kJ/m3 (P < 0.05) by SDE and sonomicrometry, respectively. A RMWI can be estimated by SDE in combination with LV pressure. Furthermore, the orientation of the loop can be used to assess whether the segment is active or passive. 相似文献
64.
Nadine Veith Margrete Solheim Koen W. A. van Grinsven Brett G. Olivier Jennifer Levering Ruth Grosseholz Jeroen Hugenholtz Helge Holo Ingolf Nes Bas Teusink Ursula Kummer 《Applied and environmental microbiology》2015,81(5):1622-1633
Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets. 相似文献
65.
66.
Mycorrhizal and nonmycorrhizal roots of Allium schoenoprasum were tested for activities of α-mannosidase, β-glucosidase and arabinosidase. Mannosidase activity was higher by a factor
of two in mycorrhizal than in nonmycorrhizal root extracts. The apparent molecular weight of the enzyme was 152 kDa and its
KM was 1.25 mM in colonized roots and 1.85 mM in uncolonized roots. α-Mannosidase activity was further characterized by an acid
pH optimum and Zn2+ dependency. No significant differences could be found between mycorrhizal and nonmycorrhizal roots for β-glucosidase and
arabinosidase activities.
Accepted: 28 August 1995 相似文献
67.
Francesco V. Rao Alexander W. Schüttelkopf Helge C. Dorfmueller Andrew T. Ferenbach Iva Navratilova Daan M. F. van Aalten 《Open biology》2013,3(10)
The dynamic modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is an essential posttranslational modification present in higher eukaryotes. Removal of O-GlcNAc is catalysed by O-GlcNAcase, a multi-domain enzyme that has been reported to be bifunctional, possessing both glycoside hydrolase and histone acetyltransferase (AT) activity. Insights into the mechanism, protein substrate recognition and inhibition of the hydrolase domain of human OGA (hOGA) have been obtained via the use of the structures of bacterial homologues. However, the molecular basis of AT activity of OGA, which has only been reported in vitro, is not presently understood. Here, we describe the crystal structure of a putative acetyltransferase (OgpAT) that we identified in the genome of the marine bacterium Oceanicola granulosus, showing homology to the hOGA C-terminal AT domain (hOGA-AT). The structure of OgpAT in complex with acetyl coenzyme A (AcCoA) reveals that, by homology modelling, hOGA-AT adopts a variant AT fold with a unique loop creating a deep tunnel. The structures, together with mutagenesis and surface plasmon resonance data, reveal that while the bacterial OgpAT binds AcCoA, the hOGA-AT does not, as explained by the lack of key residues normally required to bind AcCoA. Thus, the C-terminal domain of hOGA is a catalytically incompetent ‘pseudo’-AT. 相似文献
68.
Abstract Subinhibitory concentrations of trimethoprim-sulfamethoxazole increased the total yield of Shiga-like toxin (SLT), produced by Shigella dysenteria 1 and by enterophathogenic and enterohemorrhagic strains of Escherichia coli . Stimulation of SLT synthesis by trimethoprim-sulfamethoxazole was demonstrated by an increase in cytotoxic activity for HeLa cells and the diameter of the zone formed around bacterial colonies probed with monoclonal antibodies to SLT. Thus, supplementation of culture media with trimetroprimsulfamethoxazol will facilitate SLT purification and detection of SLT-producing bacteria. 相似文献
69.
Wolfram Lorenzen Michael W. Ring Gertrud Schw?r Helge B. Bode 《Journal of bacteriology》2009,191(18):5849-5853
It was recently shown that Myxococcus xanthus harbors an alternative and reversible biosynthetic pathway to isovaleryl coenzyme A (CoA) branching from 3-hydroxy-3-methylglutaryl-CoA. Analyses of various mutants in these pathways for fatty acid profiles and fruiting body formation revealed for the first time the importance of isoprenoids for myxobacterial development.Myxobacteria are unique among the prokaryotes as (i) they can form highly complex fruiting bodies under starvation conditions, even up to microscopic tree-like structures (28); (ii) they can move on solid surfaces using different motility mechanisms (16); (iii) they produce some of the most cytotoxic secondary metabolites, with epothilone already in clinical use against cancer (2, 3); and (iv) they harbor the largest prokaryotic genomes found so far (15, 27). The large genome might be directly related to their complex life-style and the diverse secondary (3) and primary (9) metabolisms. Already in 2002 we found that myxobacteria are able to produce isovaleryl coenzyme A (IV-CoA) and compounds derived thereof via a new pathway that branches from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is the central intermediate of the well-known mevalonate-dependent isoprenoid biosynthesis (Fig. (Fig.1)1) (22, 23). Usually IV-CoA is derived from leucine degradation via the branched-chain keto acid dehydrogenase (BKD) complex (24), which is also the preferred pathway to IV-CoA in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca (Fig. (Fig.2A).2A). However, in bkd mutants, where no or only residual leucine degradation is possible (30), the alternative pathway is induced (Fig. (Fig.2B),2B), presumably to ensure the production of iso-fatty acids (iso-FAs) (5). A possible reason for this alternative pathway is the importance of IV-CoA-derived compounds in the complex myxobacterial life cycle, which is the starvation-induced formation of fruiting bodies in which the cells differentiate into myxospores. We showed that this pathway is induced during fruiting body formation in M. xanthus when leucine is limited. Under these conditions, this pathway might be more important for protein synthesis than for lipid remodeling, as lipids are present in excess during development due to the surface reduction from vegetative rods to round myxospores as described previously (29). Examples of IV-CoA-derived compounds are the unusual iso-branched ether lipids, which are almost exclusively produced in the developing myxospores. They might serve as structural lipids and signaling compounds during fruiting body formation (26).Open in a separate windowFIG. 1.Biosynthesis of IV-CoA and compounds derived thereof and biosynthesis of isoprenoids in M. xanthus. Broken arrows indicate multistep reactions; supplementation (double-lined arrows) with MVL and IVA can be used to complement selected mutants.Open in a separate windowFIG. 2.Short representations of proposed metabolic fluxes through the IV-CoA/isoprenoid network. Broken arrows indicate no metabolic flux. (A) DK1622 (wild type); (B) DK5643 (Δbkd); (C) DK5624 (Δbkd mvaS::kan); (D) HB002 (Δbkd liuC::kan); (E) HB002 with 1 mM IVA; (F) HB002 with 1 mM MVL. Ac-CoA, acetyl-CoA; MVA, mevalonic acid.In M. xanthus, we could recently identify candidate genes involved in the alternative pathway from HMG-CoA to IV-CoA. We also described the genes required for the degradation pathway of leucine and subsequently also those involved in the transformation of IV-CoA to HMG-CoA (4). In myxobacteria leucine is an important precursor for isoprenoid biosynthesis, as was already shown elsewhere for the biosynthesis of steroids (7) and prenylated secondary metabolites like aurachin (22) or leupyrrins (6), as well as volatiles like geosmin or germacradienol in M. xanthus and S. aurantiaca (11, 13). The interconnection of iso-FAs and isoprenoid biosynthesis made it difficult to assign functions to these compound classes during fruiting body formation in M. xanthus because it cannot be excluded that reduced leucine degradation also impairs isoprenoid biosynthesis. A mutant strain of M. xanthus that was blocked in the degradation of leucine and the alternative pathway had a deletion in the bkd locus as well as a plasmid insertion in the mvaS gene encoding the HMG-CoA synthase (strain DK5624). This double mutation severely affected isoprenoid biosynthesis (5), and cultures of DK5624 must be supplemented with mevalonolactone (MVL; the cyclized form of mevalonic acid) in order to enable growth (Fig. (Fig.2C).2C). Since we have identified the genes involved in IV-CoA biosynthesis and the mevalonate pathway (4), we can now start to identify differences between strains that show deficiencies in iso-FAs and strains that show deficiencies in isoprenoids via simple analysis of the FA profile and analysis of the myxobacterial development of selected mutants.All mutants used in this study (HB002 [Δbkd liuC::kan], HB015 [Δbkd MXAN_4265::kan], DK5624 [Δbkd mvaS::kan], HB019 [Δbkd mvaS::kan mvaS+], and HB020 [Δbkd MXAN_4265::kan mvaS+]) have been published previously (4), and FA analysis as well as myxobacterial fruiting body formation has also been described previously (26).M. xanthus HB002 (Δbkd liuC) shows only residual amounts of iso-FAs, as both leucine degradation and the alternative pathway to IV-CoA are blocked (Fig. (Fig.2D)2D) and its capability to form fruiting bodies is strongly reduced (Fig. (Fig.3).3). The residual amount of iso-FAs results from a second BKD activity in M. xanthus that has been identified by residual leucine incorporation as well as by residual enzymatic activity in bkd mutants (23, 30). This second BKD activity might be a side activity of the pyruvate dehydrogenase or a related chemical oxidative decarboxylation, as no second bkd locus could be identified in the genome (unpublished results). Moreover, growth of HB002 is not MVL dependent because the block in the alternative pathway does not affect isoprenoid biosynthesis, as liuC encodes a dehydratase/hydratase that is involved in the conversion of HMG-CoA to 3-methylglutaconyl-CoA and vice versa (4). As expected, the FA profile (4) as well as the developmental phenotype (data not shown) can be complemented (Fig. (Fig.2E)2E) by the addition of isovaleric acid (IVA), the free acid of IV-CoA, indicating the importance of iso-branched compounds for development in M. xanthus. Unexpectedly, addition of MVL (Fig. (Fig.2F)2F) also partially restored fruiting body formation without restoring the FA profile (Fig. (Fig.3).3). Similarly, M. xanthus HB015 (Δbkd MXAN_4265::kan) can produce only traces of iso-FAs, as both pathways to IV-CoA are blocked. MXAN_4265 encodes a protein with similarity to a glutaconyl-CoA transferase subunit, but from our previous results, we postulated it to be involved in the alternative pathway to IV-CoA (Fig. (Fig.1)1) (4). The respective mutant shows a severely impaired developmental phenotype, which can be complemented not only by the addition of IVA (not shown) but also by the addition of MVL (Fig. (Fig.3).3). Again, no change in the FA profile was observed after the addition of MVL. However, a plasmid insertion into MXAN_4265 has a polar effect on mvaS, which is the last gene in this five-gene operon and which is crucial for HMG-CoA formation from acetoacetyl-CoA and acetyl-CoA. Therefore, we assume that both pathways to HMG-CoA are blocked in HB015: no HMG-CoA can be made from acetyl-CoA and hardly any can be made via leucine degradation. In order to prove this hypothesis, we complemented HB015 with an additional copy of mvaS under the constitutive T7A1 promoter as described previously, using the plasmid pCK4267exp (4). The resulting strain, HB020 (Δbkd MXAN_4265::kan mvaS+), showed a restored developmental phenotype but still produced only trace amounts of iso-FAs.Open in a separate windowFIG. 3.Fruiting body formation on TPM agar in selected mutants at 24, 48, and 72 h after starvation. Numbers refer to the relative amounts (in percentages) of the most abundant iso-FA, iso-15:0, which is indicative of iso-FAs in general. Strains were DK1622 (wild type), HB002 (Δbkd liuC::kan), HB015 (Δbkd MXAN_4265::kan), DK5624 (Δbkd mvaS::kan), HB019 (Δbkd mvaS::kan mvaS+), and HB020 (Δbkd MXAN_4265::kan mvaS+). DK5624 was grown with 0.3 mM MVL prior to starvation, and the cells were washed and plated on TPM with or without 1 mM of MVL.The data from HB002, HB015, and HB020 indicate an important function of the mevalonate-dependent isoprenoid pathway for fruiting body formation in M. xanthus. Therefore, MVL addition can at least partially complement the developmental phenotype of DK5624, which cannot form fruiting bodies without MVL (Fig. (Fig.3).3). However, genetic complementation with mvaS in HB019 resulted in the expected complementation of the fruiting body formation and the FA profile (Fig. (Fig.3,3, bottom row).Leucine is one of the most abundant proteinogenic amino acids. It is also an essential amino acid for M. xanthus (8), which has a predatory life-style (1), as it lives on other bacteria and fungi that contain a lot of leucine. Moreover, leucine is very efficiently incorporated into isoprenoids like geosmin and aurachin (10, 22). Thus, one can conclude that in fact leucine degradation is the major pathway for HMG-CoA biosynthesis instead of the usual formation via acetoacetyl-CoA and acetyl-CoA by the HMG-CoA synthase MvaS as indicated in Fig. Fig.2A.2A. No difference in growth was observed between culture with and culture without MVL for HB002 (Δbkd liuC::kan) and HB015 (Δbkd MXAN_4265::kan) in rich medium (data not shown), probably due to the complete MvaS activity (in HB002) or residual BKD activity (in HB002 and HB015), resulting in all precursors for the mevalonate-dependent isoprenoid biosynthesis still being present in excess under these conditions. However, under starvation conditions a small reduction in HMG-CoA biosynthesis caused by completely blocked leucine degradation (as in HB002 due to the mutation in liuC [Fig. [Fig.2D])2D]) or reduced leucine degradation and a mutation in mvaS (as in HB015) might each result in a reduced isoprenoid level, which can be complemented at least partially by the addition of MVL. This would also explain the difference in the developmental phenotypes of HB002 and HB015, with the phenotype being more severe in HB002 (Fig. (Fig.3).3). The fact that complementation with IVA is in all cases more efficient than that with MVL can be explained by the role of the already-mentioned isolipids. They can be produced only after IVA addition, which also complements the (developmental) phenotype of some of these mutants (26).As isoprenoids represent probably the most diverse class of natural products (14), it is very hard to predict which particular isoprenoids might be responsible for the observed effects. Several isoprenoids (7, 11-13), prenylated secondary metabolites (6, 22), and carotenoids (18-21) are known from myxobacteria in general, and a major volatile compound from M. xanthus is the terpenoid geosmin (13). In order to test whether geosmin might be required for fruiting body formation, we constructed a plasmid insertion mutant in MXAN_6247, which is involved in the cyclization of farnesyl diphosphate to geosmin, following published procedures (4, 5). The resulting strain, HB022, showed the expected loss in geosmin production but no developmental phenotype (data not shown).Additionally, it cannot be excluded that prenylated proteins, sugars, or quinones from the respiratory chain are important for fruiting body formation. Moreover, stigmolone has been described as a pheromone involved in fruiting body formation in S. aurantiaca (25). Although its biosynthesis has not been elucidated yet, stigmolone could be an isoprenoid as well, which is deducible from the two iso-branched residues within its chemical structure (17). Nevertheless, the importance of isoprenoids for M. xanthus is evident from the data presented, and clearly more work is needed to identify the compound(s) involved. 相似文献
70.
Kumar T Liestøl K Maehlen J Hiorth A Jettestuen E Lind H Brorson SH 《Human biology; an international record of research》2002,74(1):137-142
This study examines the distribution of apolipoprotein E (APOE) alleles in a population of healthy male and female Norwegians (n = 798) below the age of 40. The -491A/T polymorphism of the promoter region of the APOE gene was also examined. A seminested polymerase chain reaction was applied in the genotyping. The results showed that the E3 allele had the highest frequency (0.744), followed by E4 (0.198) and E2 (0.058). The APOE frequencies found in this study differ significantly from those obtained in earlier Norwegian APOE phenotypings. The allele frequencies in the -491 site of the promoter region were 0.845 for the A allele and 0.155 for the T allele. The genotype frequency was highest for AA (0.707), followed by AT (0.277) and TT (0.016). Moreover, the A allele was in linkage disequilibrium to E4. 相似文献