首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   88篇
  国内免费   2篇
  930篇
  2023年   8篇
  2022年   6篇
  2021年   14篇
  2020年   17篇
  2019年   20篇
  2018年   11篇
  2017年   20篇
  2016年   16篇
  2015年   46篇
  2014年   39篇
  2013年   53篇
  2012年   68篇
  2011年   74篇
  2010年   40篇
  2009年   31篇
  2008年   41篇
  2007年   50篇
  2006年   43篇
  2005年   41篇
  2004年   42篇
  2003年   39篇
  2002年   29篇
  2001年   8篇
  2000年   18篇
  1999年   13篇
  1998年   16篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1992年   4篇
  1991年   3篇
  1989年   8篇
  1988年   4篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1982年   8篇
  1981年   5篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1969年   2篇
  1967年   3篇
  1966年   2篇
排序方式: 共有930条查询结果,搜索用时 15 毫秒
51.
There is a need for better methods to quantify regional myocardial function. In the present study, we investigated the feasibility of quantifying regional function in terms of a segmental myocardial work index as derived from strain Doppler echocardiography (SDE) and invasive pressure. In 10 anesthetized dogs, we measured left ventricular (LV) pressure by micromanometer and myocardial longitudinal strains by SDE and sonomicrometry. The regional myocardial work index (RMWI) was calculated as the area of the pressure-strain loop. As a reference method for strain, we used sonomicrometry. By convention, the loop area was assigned a positive sign when the pressure-strain coordinates rotated counterclockwise. Measurements were done at baseline and during volume loading and left anterior descending coronary artery (LAD) occlusion, respectively. There was a good correlation between RMWI calculated from strain by SDE and strain by sonomicrometry (y = 0.73x + 0.21, r = 0.82, P < 0.01). Volume loading caused an increase in RMWI from 1.3 +/- 0.2 to 2.2 +/- 0.1 kJ/m3 (P < 0.05) by SDE and from 1.5 +/- 0.3 to 2.7 +/- 0.3 kJ/m3 (P = 0.066) by sonomicrometry. Short-term ischemia (1 min) caused a decrease in RMWI from 1.3 +/- 0.2 to 0.3 +/- 0.04 kJ/m3 (P < 0.05) and from 1.3 +/- 0.3 to 0.5 +/- 0.2 kJ/m3 (P < 0.05) by SDE and sonomicrometry, respectively. In the nonischemic ventricle and during short-term ischemia, the pressure-strain loops rotated counterclockwise, consistent with actively contracting segments. Long-term ischemia (3 h), however, caused the pressure-strain loop to rotate clockwise, consistent with entirely passive segments, and the loop areas became negative, -0.2 +/- 0.1 and -0.1 +/- 0.03 kJ/m3 (P < 0.05) by SDE and sonomicrometry, respectively. A RMWI can be estimated by SDE in combination with LV pressure. Furthermore, the orientation of the loop can be used to assess whether the segment is active or passive.  相似文献   
52.
53.
Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.  相似文献   
54.
Ten phosphate solubilizing pseudomonads isolated from a partially recultivated potash tailings pile in Germany were characterized and tested for their potential to assist in the ongoing recultivation process. Despite fertilization, the plants which are grown for recultivation show phosphate deficiency symptoms, and therefore the isolates are intended to be used as biofertilizer inoculants. On agar plates incubated at five different temperatures, some of the strains showed a temperature-dependent ability to solubilize tricalcium phosphate, while others performed the same at any given temperature. In liquid medium, the isolates solubilized between 271 and 730 μg ml(-1) of phosphate from tricalcium phosphate. Both the weakest (designated S10) and the strongest solubilizing strain (S06) were further tested for their viability during solubilization. In an assay over the course of 1 week, both strains released their maximum amount of phosphate after 2-4 days. At that later point of time, however, viable cells of isolate S06 were no longer detectable, whereas the weaker strain S10 could be cultured after 1 week in broth. Taking all in vitro observations into account, the usability of the isolates as biofertilizers is critically discussed regarding both the in situ conditions on the tailings pile and the lowered viability due to the excess production of organic acids.  相似文献   
55.
56.
The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.  相似文献   
57.
Methanol is the simplest of all alcohols, is universally distributed in anoxic sediments as a result of plant material decomposition and is constantly attracting attention as an interesting substrate for anaerobes like acetogens that can convert bio-renewable methanol into value-added chemicals. A major drawback in the development of environmentally friendly but economically attractive biotechnological processes is the present lack of information on biochemistry and bioenergetics during methanol conversion in these bacteria. The mesophilic acetogen Eubacterium callanderi KIST612 is naturally able to consume methanol and produce acetate as well as butyrate. To grasp the full potential of methanol-based production of chemicals, we analysed the genes and enzymes involved in methanol conversion to acetate and identified the redox carriers involved. We will display a complete model for methanol-derived acetogenesis and butyrogenesis in Eubacterium callanderi KIST612, tracing the electron transfer routes and shed light on the bioenergetics during the process.  相似文献   
58.
59.
60.
We investigated the prevalence, distribution, and structure of espP in Shiga toxin-producing Escherichia coli (STEC) and assessed the secretion and proteolytic activity of the encoded autotransporter protein EspP (extracellular serine protease, plasmid encoded). espP was identified in 56 of 107 different STEC serotypes. Sequencing of a 3,747-bp region of the 3,900-bp espP gene distinguished four alleles (espPalpha, espPbeta, espPgamma, and espPdelta), with 99.9%, 99.2%, 95.3%, and 95.1% homology, respectively, to espP of E. coli O157:H7 strain EDL933. The espPbeta, espPgamma, and espPdelta genes contained unique insertions and/or clustered point mutations that enabled allele-specific PCRs; these demonstrated the presence of espPalpha, espPbeta, espPgamma, and espPdelta in STEC isolates belonging to 17, 16, 15, and 8 serotypes, respectively. Among four subtypes of EspP encoded by these alleles, EspPalpha (produced by enterohemorrhagic E. coli [EHEC] O157:H7 and the major non-O157 EHEC serotypes) and EspPgamma cleaved pepsin A, human coagulation factor V, and an oligopeptide alanine-alanine-proline-leucine-para-nitroaniline, whereas EspPbeta and EspPdelta either were not secreted or were proteolytically inactive. The lack of proteolysis correlated with point mutations near the active serine protease site. We conclude that espP is widely distributed among STEC strains and displays genetic heterogeneity, which can be used for subtyping and which affects EspP activity. The presence of proteolytically active EspP in EHEC serogroups O157, O26, O111, and O145, which are bona fide human pathogens, suggests that EspP might play a role as an EHEC virulence factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号